Displaying all 4 publications

Abstract:
Sort:
  1. Gholami K, Muniandy S, Salleh N
    Biomed Res Int, 2013;2013:840121.
    PMID: 23509787 DOI: 10.1155/2013/840121
    Precise uterine fluid pH regulation may involve the Na(+)/H(+)-exchanger (NHE). We hypothesized that NHE isoforms are differentially expressed under different sex steroid treatment and at different oestrous cycle phases which may explain the uterine fluid pH changes observed under these conditions.
    Matched MeSH terms: Sodium-Hydrogen Antiporter/metabolism*
  2. Chinigarzadeh A, Muniandy S, Salleh N
    Environ Toxicol Pharmacol, 2015 Jul;40(1):39-48.
    PMID: 26068551 DOI: 10.1016/j.etap.2015.05.003
    Maintaining near normal uterine fluid pH is important for restoring uterine function after menopause. We hypothesized that genistein could restore uterine fluid pH via its effect on NHE expression. This study therefore investigated changes in uterine NHE-1, 2 and 4 expression under genistein influence. Ovariectomized female rats received genistein (25, 50 or 100mg/kg/day) for seven consecutive days. Uteri were harvested and NHE-1, 2 and 4 mRNA expression were analyzed by Real-time PCR while distribution of these transporters' protein was observed by immunohistochemistry. Expression of NHE-1, 2 and 4 mRNA increased with increasing doses of genistein which was antagonized by ICI 182780. Under genistein influence, NHE-1, 2 and 4 proteins were found to be distributed at apical membrane of endometrial luminal epithelia. Enhanced expression of NHE-1, 2 and 4 in ovariectomised rat uteri by genistein might help to restore pH of uterine fluid which could be useful for women after menopause.
    Matched MeSH terms: Sodium-Hydrogen Antiporter/metabolism*
  3. Gholami K, Muniandy S, Salleh N
    Int J Med Sci, 2013;10(9):1121-34.
    PMID: 23869188 DOI: 10.7150/ijms.5918
    Precise control of uterine fluid pH, volume and electrolytes is important for the reproductive processes. In this study, we examined the functional involvement of multiple proteins including Cystic Fibrosis Transmembrane Regulator (CFTR), Cl(-)/HCO3 (-) exchanger (SLC26A6), sodium-hydrogen exchanger-1 (NHE-1) and carbonic anhydrase (CA) in the regulation of these uterine fluid parameters.
    Matched MeSH terms: Sodium-Hydrogen Antiporter/metabolism*
  4. Liew CW, Illias RM, Mahadi NM, Najimudin N
    FEMS Microbiol Lett, 2007 Nov;276(1):114-22.
    PMID: 17937670
    A Na(+)/H(+) antiporter gene was isolated from alkaliphilic Bacillus sp. G1. The full-length sequence of the Na(+)/H(+) antiporter gene was obtained using a genome walking method, and designated as g1-nhaC. An ORF preceded by a promoter-like sequence and a Shine-Dalgarno sequence, and followed by a terminator-like sequence was identified. The deduced amino acid sequence consists of 535 amino acids, and a calculated molecular mass of 57 776 Da. g1-nhaC was subsequently cloned into pET22b(+) and expressed in Escherichia coli BL21 (DE3). Recombinant E. coli harboring the g1-nhaC gene was able to grow in modified L medium at various concentrations of NaCl (0.2-2.0 M) at different pH values. The recombinant bacteria grew well in the medium with concentrations of NaCl as high as 1.75 M at pH 8.0-9.0. Minimal growth was observed at 2.0 M NaCl, pH 8.0-9.0. At pH 10, the recombinant bacteria grew well in a medium with a low concentration of NaCl (0.2 M). These results suggested that the g1-NhaC antiporter from Bacillus sp. G1 plays a role in Na(+) extrusion at lower pH values and in pH homeostasis at pH 10 under Na(+)-limiting conditions.
    Matched MeSH terms: Sodium-Hydrogen Antiporter/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links