Displaying all 10 publications

Abstract:
Sort:
  1. Hassan H, Othman MF, Razak HRA
    Curr Med Imaging, 2021;17(11):1271-1275.
    PMID: 33593263 DOI: 10.2174/1573405617666210216091202
    Bone metastases are a common source of malignancy in the skeleton and occur much more often than primary bone cancer. Several works were being performed to identify early markers for bone metastasis and novel drug targets to improve patients' quality of life. As some concerns exist with the [18F]sodiumfluoridein positron emission tomography (PET) bone imaging, there has been an increase in the number of targeted radiopharmaceutical markers for bone metastases imaging in its competitor, 68Ga. Since 18F properties are superior to those of 68Ga, there is a distinct motivation for developing 18F radiopharmaceuticals for bone metastases imaging.
    Matched MeSH terms: Sodium Fluoride*
  2. Chen CJ, Ling KS, Esa R, Chia JC, Eddy A, Yaw SL
    Community Dent Oral Epidemiol, 2010 Aug;38(4):310-4.
    PMID: 20560998 DOI: 10.1111/j.1600-0528.2010.00529.x
    This study was undertaken to assess the impact of fluoride mouth rinsing on caries experience in a cohort of schoolchildren 3 years after implementation.
    Matched MeSH terms: Sodium Fluoride/administration & dosage; Sodium Fluoride/analysis; Sodium Fluoride/therapeutic use*
  3. Qamar Z, Haji Abdul Rahim ZB, Neon GS, Chew HP, Zeeshan T
    Arch Oral Biol, 2019 Oct;106:104482.
    PMID: 31325718 DOI: 10.1016/j.archoralbio.2019.104482
    OBJECTIVE: The aim of the study was to determine demineralisation inhibition and remineralisation potential of poly-γ-glutamic acid with its possible mechanism of action on human dental enamel.

    METHODOLOGY: Three sodium-fluoride(NaF) concentration(0.01%w/v,0.1%w/v and 0.5%w/v respectively)and two poly-γ-glutamic acid(PGGA)concentration(1%w/v and 2%w/v respectively)were prepared in 0.1 M acetic acid(pH4.0)and deionized distilled water.For de/re-mineralisation study, tooth samples (18 teeth varnished, leaving a 2 mm2 window on the mid-buccal surfaces) were immersed in respective acidified NaF and PGGA solutions. The Ca2+ release/uptake was monitored with ISE over 72-hr with increasing pH every 24-h from 4.0 to 6.0.These teeth were later subjected to cross-sectional microhardness to determine integrated mineral recovery of enamel on increasing pH of respective acidified solution.In order to determine mechanism of PGGA,two concentrations of PGGA in deionized-water-solutions were used for tooth samples immersion followed by overnight drying then later subjected to Fourier Transform Infra-Red(FT-IR) analysis.The FT-IR analysis was also carried out on PGGA powder.For control,the experiment was repeated using hydroxyapatite(HAp)pellets.The density of PGGA solutions(1%and2%)was also measured to determine their dynamic viscosities.

    RESULTS: The ISE and microhardness testing revealed statistically significant (ρ ≤ 0.05) dissolution inhibition and remineralisation potential for tooth sample treated with acidified 2%PGGA. From the FT-IR spectra, it was observed that the profiles of the enamel and HAp surfaces treated with 1%-and 2%-PGGA solutions were similar to those of PGGA powder.It was found that the viscosity of PGGA increases with increasing concentration.

    CONCLUSION: The study implies that 2% PGGA is more effective than NaF as forms a coating layer to protect from demineralisation and promote remineralisation of the tooth surface.

    Matched MeSH terms: Sodium Fluoride/pharmacology
  4. Usmani S, Rasheed R, Al Kandari F
    J Nucl Med Technol, 2020 Jun;48(2):181-183.
    PMID: 32111663 DOI: 10.2967/jnmt.119.235986
    Textitis is a new term used to refer to the degenerative-strain osteoarthritis that comes from excessive use of a smart phone. 18F-NaF is increasingly used in diagnosing skeletal pain that is not identified on radiographs. We report a case of a 26-y-old woman with left breast cancer referred for 18F-NaF PET/CT, who was complaining of right thumb and wrist pain. Findings were negative for bone secondaries. Dedicated hands views were acquired on a positron emission mammography scanner and showed focal uptake at the first carpometacarpal and second metacarpophalangeal joints. On the basis of the strong history, the findings were likely due to active arthritic changes caused by repetitive strain injury from excessive text messaging.
    Matched MeSH terms: Sodium Fluoride*
  5. Kumar S, Thomas BS, Gupta K, Guddattu V, Alexander M
    Niger J Clin Pract, 2018 Aug;21(8):1029-1033.
    PMID: 30074006 DOI: 10.4103/njcp.njcp_341_17
    Aim and objectives: The aim and the objectives were. (1) to assess the efficacy of a desensitizing toothpaste containing 8.0% arginine-calcium carbonate (Colgate® Sensitive Pro-Relief™), (2) to assess the efficacy of a desensitizing toothpaste containing 8.0% arginine-calcium carbonate (Colgate® Sensitive Pro-Relief™) used in combination with iontophoresis, and (3) to compare the effectiveness of the above methods.

    Subjects and Methods: Two groups of 40 patients each having dentinal hypersensitivity were treated using 8% proarginine and iontophoresis. The patients were recalled after 1, 2, and 4 weeks. The scores were tabulated and the results were analyzed using SPSS statistical software.

    Results: Visual analog scale between the two groups showed a significant difference from the 1st week till the 4th week. ANOVA values showed the reduction in the dentinal hypersensitivity in Group 2 using the iontophoresis along with the 8.0% arginine-calcium carbonate toothpaste. The Cochran-Mantel-Haenszel correlation test of the Schiff's dentinal hypersensitivity cross-tabulation showed P < 0.001 which was statistically significant reduction after the 4th week following the application of 8.0% arginine-calcium carbonate along with iontophoresis.

    Conclusion: Iontophoresis, when used along with Colgate® Sensitive Pro-Relief™ toothpaste, can provide additional benefit as this provides a better sealing effect.

    Matched MeSH terms: Sodium Fluoride/administration & dosage; Sodium Fluoride/therapeutic use*
  6. Siti Aisyah Abd Ghafar, Muhammad Fikhry Mohd Salehuddin,, Nur Syamimi Syuhada Che Awang, Rohazila Mohamad Hanafiah
    MyJurnal
    Introduction:Spilanthes acmella, also known as “subang nenek’, has been used traditionally in Malaysia to treat toothache. A previous study has shown Spilanthes acmella leaves extracts (SALE) inhibit Streptococcus mutans growth. Streptococcus mutans is commonly found in the human oral cavity and is the main contributor to tooth de-cay. There is no study on the antibacterial effects of Spilanthes acmella flower extracts (SAFE) against Streptococcus mutans reported to date. Therefore, the objective of this study is to investigate antibacterial properties of SAFE against S. mutans. Methods:S. mutans was subcultured in Muller Hinton (MH) broth and agar. Sequential extractions of S. acmella flowers were conducted using four different solvents with increasing polarity, [n- hexane, dichloromethane (DCM), acetone, methanol (MeoH)] and tested with different concentrations against S. mutans via the disc diffusion assay, minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). Sodium fluoride (NaF) was used as a positive control while DMSO was used as a negative control. Results: The disc diffusion assay shows SAFE inhibited Streptococcus mutans growth. SAFE-DCM shows the greatest inhibition properties (12.33±2.30 mm) followed by SAFE-n-hexane (11.33±0.57 mm). Meanwhile, SAFE-Meoh and SAFE-acetone show no inhibition zone (6.00±0.001 mm). MIC value for SAFE-DCM and SAFE-n-hexane is 12.5 mg/mL respectively. Whereas, MBC value SAFE-DCM and SAFE-n-hexane is 50.0 mg/mL respectively. Conclusion: It can be concluded SAFE-DCM and SAFE-n-hexane possesses bactericidal properties against Streptococcus mutans.
    Matched MeSH terms: Sodium Fluoride
  7. Hassan H, Othman MF, Abdul Razak HR, Zakaria ZA, Ahmad Saad FF, Osman MA, et al.
    Molecules, 2022 Nov 17;27(22).
    PMID: 36432069 DOI: 10.3390/molecules27227969
    [18F]sodium fluoride ([18F]NaF) is recognised to be superior to [99mTc]-methyl diphosphate ([99mTc]Tc-MDP) and 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) in bone imaging. However, there is concern that [18F]NaF uptake is not cancer-specific, leading to a higher number of false-positive interpretations. Therefore, in this work, [18F]AlF-NOTA-pamidronic acid was prepared, optimised, and tested for its in vitro uptake. NOTA-pamidronic acid was prepared by an N-Hydroxysuccinimide (NHS) ester strategy and validated by liquid chromatography-mass spectrometry analysis (LC-MS/MS). Radiolabeling of [18F]AlF-NOTA-pamidronic acid was optimised, and it was ensured that all quality control analysis requirements for the radiopharmaceuticals were met prior to the in vitro cell uptake studies. NOTA-pamidronic acid was successfully prepared and radiolabeled with 18F. The radiolabel was prepared in a 1:1 molar ratio of aluminium chloride (AlCl3) to NOTA-pamidronic acid and heated at 100 °C for 15 min in the presence of 50% ethanol (v/v), which proved to be optimal. The preliminary in vitro results of the binding of the hydroxyapatite showed that [18F]AlF-NOTA-pamidronic acid was as sensitive as [18F]sodium fluoride ([18F]NaF). Normal human osteoblast cell lines (hFOB 1.19) and human osteosarcoma cell lines (Saos-2) were used for the in vitro cellular uptake studies. It was found that [18F]NaF was higher in both cell lines, but [18F]AlF-NOTA-pamidronic acid showed promising cellular uptake in Saos-2. The preliminary results suggest that further preclinical studies of [18F]AlF-NOTA-pamidronic acid are needed before it is transferred to clinical research.
    Matched MeSH terms: Sodium Fluoride
  8. Ghani B, Takai M, Hisham NZ, Kishimoto N, Ismail AK, Tano T, et al.
    Appl Environ Microbiol, 1993 Apr;59(4):1176-80.
    PMID: 16348915
    A Mo -reducing bacterium (strain 48), which grew on medium supplemented with 200 mM Mo, was isolated from stream water obtained from Chengkau, Malaysia. The chemical properties of strain 48 conform to the characteristics of Enterobacter cloacae. Under anaerobic conditions in the glucose-yeast extract medium containing phosphate ion (2.9 mM) and Mo (10 mM), the bacterium reduced Mo to form molybdenum blue. Approximately 27% of Mo added to the medium was reduced after 28 h of cultivation. The reduction of Mo with glucose as an electron donor was strongly inhibited by iodoacetic acid, sodium fluoride, and sodium cyanide, suggesting an involvement of the glycolytic pathway and electron transport in Mo reduction. NADH and N,N,N',N' -tetramethyl-p-phenylenediamine served as electron donors for Mo reduction. When NADH was used as an electron donor, at first cytochrome b in the cell extract was reduced, and then molybdenum blue was formed. Sodium cyanide strongly inhibited Mo reduction by NADH (5 mM) but not the reduction of cytochrome b in the cell extract, suggesting that the reduced component of the electron transport system after cytochrome b serves as an electron donor for Mo reduction. Both ferric and stannous ions strongly enhanced the activity of Mo reduction by NADH.
    Matched MeSH terms: Sodium Fluoride
  9. Sosroseno W
    Immunopharmacol Immunotoxicol, 2003 Feb;25(1):123-7.
    PMID: 12675204
    Spleen cells from saline- and Porphyromonas gingivalis-primed mice were cultured and stimulated with or without P. gingivalis and added with or without various concentration of sodium fluoride (NaF). Cell proliferation, antigen-specific IgG antibodies and both IFN-gamma and IL-10 levels were determined by a colorimetric assay, ELISA and commercial ELISA kits respectively. The results showed that NaF at concentration of 1 x 10(-6) M enhanced but at concentration of 1 x 10(-1) M abolished the immune response to P. gingivalis, suggesting that NaF at low concentration may act as an adjuvant but at high concentration may be toxic to the P. gingivalis-induced murine splenic immune response in vitro.
    Matched MeSH terms: Sodium Fluoride/pharmacology*
  10. Majithia U, Venkataraghavan K, Choudhary P, Trivedi K, Shah S, Virda M
    Indian J Dent Res, 2016 Sep-Oct;27(5):521-527.
    PMID: 27966511 DOI: 10.4103/0970-9290.195642
    INTRODUCTION: In an attempt to manage noncavitated carious lesions noninvasively through remineralization, a range of novel fluoride varnishes with additional remineralizing agents have been made available for clinical application.

    AIM AND OBJECTIVES: The aim of this study was to compare and evaluate the remineralization potential of three commercially available varnishes on artificial enamel lesions.

    MATERIALS AND METHODS: This in vitro study involves eighty intact enamel specimens prepared from premolars extracted for orthodontic purposes. After specimen preparation, the eighty samples were divided randomly into two groups (n = 40) for measurement of baseline surface Vickers microhardness and baseline calcium/phosphorus ratio (% weight) through EDAX testing. Thereafter, the specimens were subjected to demineralization for 96 h to induce initial enamel lesions and the measurements were repeated. Following demineralization, each of the two groups was divided randomly into four subgroups (n = 10) from which one was used as the control group and the others three were allotted to each of the three test varnishes. After varnish application, all the specimens were subjected to a pH cycling regimen that included alternative demineralization (3 h) and remineralization (21 h) daily, for 5 consecutive days. The Vickers microhardness and EDAX measurements were then repeated.

    RESULTS: One-way ANOVA and post hoc Tukey's tests were conducted for multiple group comparison. All the three commercially available varnishes were capable of remineralizing initial enamel lesions that were induced artificially. No difference was noted in the remineralizing efficacy of the varnishes despite their different compositions. MI Varnish™ (casein phosphopeptide-amorphous calcium phosphate fluoride varnish) showed slightly better recovery in surface microhardness as compared to the other two varnishes.

    CONCLUSION: All the varnishes used in this in vitro study are capable of reversing early enamel lesions.
    Matched MeSH terms: Sodium Fluoride/pharmacology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links