Displaying all 16 publications

Abstract:
Sort:
  1. Trishnananda M
    PMID: 524149
    There are regional patterns in snake-bites. Bites by cobras have a high incidence in Thailand and in the Philippines with a high case fatality rate. Among the venomous snakes of haemorrhagic nature, bites by Trimeresurus species such as green pit viper, Taiwan habu and Taiwan bamboo viper are important in Thailand and Taiwan for their high incidence of bite, although the case fatality rates are low. Bites by Malayan pit vipers are also important in Thailand and Malaysia because of their high incidence. Bites by sea snakes are more common in Malaysia than in the Philippines and Thailand.
    Matched MeSH terms: Snake Bites/drug therapy
  2. Yee KT, Maw LZ, Kyaw AM, Khow O, Oo AW, Oo TKK, et al.
    Toxicon, 2020 Apr 15;177:41-45.
    PMID: 32056833 DOI: 10.1016/j.toxicon.2020.02.003
    Green pit viper (Trimeresurus sp.) bite occurred throughout Myanmar, but there is no specific antivenom produced in the country for related envenomation. Instead, Myanmar Russell's viper antivenom (Anti-MRV) was often misused because of prolonged clotting time was observed from both species. Thai green pit viper antivenom (Anti-TGPV) raised against Trimeresurus albolabris was found to be effective against venoms of more than ten Trimeresurus sp. from Thailand, Malaysia and Indonesia. The present study compared the neutralization capacities of Anti-TGPV and Anti-MRV towards the venom from T. erythrurus from Myanmar. Anti-TGPV was more efficacious than Anti-MRV in cross-neutralizing the lethal and haemorrhagic activities of the venom by a potency of a least 1.4 times higher. Although Anti-TGPV effectively cross-neutralized the coagulation activity of the venom, Anti-MRV failed to do so. Immunodiffusion and immunoblot experiments showed that Anti-TGPV cross-reacted with more protein components of the venom than Anti-MRV. In conclusion, Anti-TGPV is a better choice for patients bitten by Myanmar green pit viper, but further clinical investigation is required. The current findings highlight the development of a specific antivenom against Myanmar green pit viper venom.
    Matched MeSH terms: Snake Bites/drug therapy*
  3. Butt MA, Ahmad M, Fatima A, Sultana S, Zafar M, Yaseen G, et al.
    J Ethnopharmacol, 2015 Jun 20;168:164-81.
    PMID: 25818693 DOI: 10.1016/j.jep.2015.03.045
    Medicinal plants represent one of the most accessible resources available for snake and scorpion bite among the rural communities of Northern Pakistan. This first ethno-botanical study aimed to document the indigenous knowledge and practices of using plants for snake and scorpion bite disorders in Northern Pakistan.
    Matched MeSH terms: Snake Bites/drug therapy*
  4. Warrell DA, Looareesuwan S, White NJ, Theakston RD, Warrell MJ, Kosakarn W, et al.
    Br Med J (Clin Res Ed), 1983 Feb 26;286(6366):678-80.
    PMID: 6402200
    Five patients were bitten by the Malayan krait Bungarus candidus (Linnaeus) in eastern Thailand or north western Malaya. Two patients were not envenomed but the other three developed generalised paralysis which progressed to respiratory paralysis in two cases, one of which ended fatally. One patient showed parasympathetic abnormalities. Anticholinesterase produced a dramatic improvement in one patient. Another patient probably benefited from paraspecific antivenom. The efficacy of antivenoms and adjuvants such as anticholinesterases in patients with neurotoxic envenoming requires further study.
    Matched MeSH terms: Snake Bites/drug therapy*
  5. Yap MK, Tan NH, Sim SM, Fung SY
    Toxicon, 2013 Jun;68:18-23.
    PMID: 23537711 DOI: 10.1016/j.toxicon.2013.02.017
    Existing protocols for antivenom treatment of snake envenomations are generally not well optimized due partly to inadequate knowledge of the toxicokinetics of venoms. The toxicokinetics of Naja sputatrix (Javan spitting cobra) venom was investigated following intravenous and intramuscular injections of the venom into rabbits using double-sandwich ELISA. The toxicokinetics of the venom injected intravenously fitted a two-compartment model. When the venom was injected intramuscularly, the serum concentration-time profile exhibited a more complex absorption and/or distribution pattern. Nevertheless, the terminal half-life, volume of distribution by area and systemic clearance of the venom injected intramuscularly were not significantly different (p > 0.05) from that of the venom injected intravenously. The systemic bioavailability of the venom antigens injected by intramuscular route was 41.7%. Our toxicokinetic finding is consistent with other reports, and may indicate that some cobra venom toxins have high affinity for the tissues at the site of injection. Our results suggest that the intramuscular route of administration doesn't significantly alter the toxicokinetics of N. sputatrix venom although it significantly reduces the systemic bioavailability of the venom.
    Matched MeSH terms: Snake Bites/drug therapy
  6. Reid HA
    J Trop Med Hyg, 1975 May;78(5):106-13.
    PMID: 1152101
    Epidemiological features as reflected by 101 patients with unequivocal sea-snake bite received in north-west Malaya are reviewed. Enhydrina schistosa caused over half the bites, including seven of the eight fatal bites. It is the most dangerous sea-snake to man. Over 90 per cent of the victims were male and 80 of the 101 patients were fishermen bitten at their job. Most victims were bitten on the lower limb through treading on the snake, and this resulted in more cases of serious poisoning than upper limb bites (caused through handling nets, sorting fish and so on). Only 14 cathers were bitten (through treading on the sea-snake; no bathers were bitten while swimming). In patients coming to hospital more than six hours after the bite, there was a four-fold increase in serious poisoning compared with patients coming within six hours of the bite. Thus, as time elapses after the bite, the victim is less likely to seek medical help unless poisoning is severe. Despite the lethal toxicity of sea-snake venom, in patients seen during 1957-61 before sea-snake antivenom became available, the mortality was only 10 per cent. Trivial or no poisoning followed in 80 per cent of the bites. On the other hand, of 11 patients (20 per cent) with serious poisoning, over half (six patients) died despite supportive hospital treatment. These epidemiological features observed in Malaya probably apply to most fishing folk along Asian coastlines where sea-snakes abound. If this is so, sea-snake bite must be a common hazard feared by millions of fishing folk, and a common cause of illness and death. But it is unlikely that the extent of this problem will be revealed to orthodox medicine for many decades because most fishing villages are far from medical centres; and even if hospitals or medical centres are available, fishing folk are usually reluctant to attend them. Only one species of sea-snake, Pelamis platurus, extends to the east coasts of Africa and west coasts of the tropical Americas, but for various reasons this species does not appear to constitute much of a hazard to fishing folk in these areas. Although bathers are occasionally bitten along Asian coasts, when they inadvertently tread on a sea-snake, the risk of sea-snake bite in this area is extremely low. The prevention of sea-snake bite and poisoning is considered. Highly effective antivenom is now available for treating victims with serious poisoning; death should not occur provided adequate medical treatment is given within a few hours of the bite. The main problem is provision of adequate medical care at rural medical centres and overcoming the reluctance fishing folk often have in attending these centres.
    Matched MeSH terms: Snake Bites/drug therapy
  7. Kumarapppan C, Jaswanth A, Kumarasunderi K
    Asian Pac J Trop Med, 2011 Sep;4(9):743-7.
    PMID: 21967700 DOI: 10.1016/S1995-7645(11)60185-5
    OBJECTIVE: To validate traditional claims of usefulness of the Indian plants in management of poisonous snakebite and evaluate the antivenom properties displayed by the alcoholic extracts of Andrographis paniculata (A. paniculata), Crateva magna (C. magna), Gloriosa superba (G. superba) and Hydrocotyle javanica (H. javanica).

    METHODS: These plants were collected, identified and the extracts were prepared by using conventional Soxhlet ethanol extraction technique. The venom neutralization activity was accessed in mice (20-25g) and number of mortalities was observed against clinically important snake (Naja nigricollis) venom. Present study also deals with in vitro membrane stabilizing activity of these plants against hyposaline induced human red blood corpuscles (HRBC).

    RESULTS: Extracts of H. javanica and G. superba gave 80 % and 90 % protection to mice treated with minimum lethal dose of venom (LD(99)). These two plants showed significant neutralization effect against the venoms of Naja nigricollis venom. H. javanica and G. superba (25-100 mg/mL) produced significant changes of membrane stabilization of human red blood cells (HRBC) exposed to hyposaline-induced haemolysis.

    CONCLUSIONS: We conclude that probably due to presence of various phytochemicals plays an important role in the anti-venom potential of these Indian medicinal plants against Naja nigricollis venom. The above observations confirmed that A. paniculata, C. magna, G. superba and H. javanica plant extracts possess potent snake venom neutralizing capacity and could potentially be used as an adjuvants for antivenin therapy in case of snakebite envenomation, especially against the local effects of cobra venoms.

    Matched MeSH terms: Snake Bites/drug therapy*
  8. Ambikabothy J, Ibrahim H, Ambu S, Chakravarthi S, Awang K, Vejayan J
    J Ethnopharmacol, 2011 Sep 1;137(1):257-62.
    PMID: 21640180 DOI: 10.1016/j.jep.2011.05.013
    Evaluations of the anti-snake venom efficacy of Mimosa pudica tannin isolate (MPT) obtained from root of the plant.
    Matched MeSH terms: Snake Bites/drug therapy*
  9. Yap MK, Tan NH, Sim SM, Fung SY, Tan CH
    Basic Clin Pharmacol Toxicol, 2015 Oct;117(4):274-9.
    PMID: 25819552 DOI: 10.1111/bcpt.12398
    The treatment protocol of antivenom in snake envenomation remains largely empirical, partly due to the insufficient knowledge of the pharmacokinetics of snake venoms and the effects of antivenoms on the blood venom levels in victims. In this study, we investigated the effect of a polyvalent antivenom on the serum venom antigen levels of Naja sputatrix (Javan spitting cobra) venom in experimentally envenomed rabbits. Intravenous infusion of 4 ml of Neuro Polyvalent Snake Antivenom [NPAV, F(ab')2 ] at 1 hr after envenomation caused a sharp decline of the serum venom antigen levels, followed by transient resurgence an hour later. The venom antigen resurgence was unlikely to be due to the mismatch of pharmacokinetics between the F(ab')2 and venom antigens, as the terminal half-life and volume of distribution of the F(ab')2 in serum were comparable to that of venom antigens (p > 0.05). Infusion of an additional 2 ml of NPAV was able to prevent resurgence of the serum venom antigen level, resulting in a substantial decrease (67.1%) of the total amount of circulating venom antigens over time course of envenomation. Our results showed that the neutralization potency of NPAV determined by neutralization assay in mice may not be an adequate indicator of its capability to modulate venom kinetics in relation to its in vivo efficacy to neutralize venom toxicity. The findings also support the recommendation of giving high initial dose of NPAV in cobra envenomation, with repeated doses as clinically indicated in the presence of rebound antigenemia and symptom recurrence.
    Matched MeSH terms: Snake Bites/drug therapy*
  10. Reid HA
    Lancet, 1975 Mar 15;1(7907):622-3.
    PMID: 47960
    Among a series of 101 patients bitten by sea-snakes in Malaya in the years 1957-64, 80% were fishermen. Bathers and divers are occasionally bitten. Before sea-snake antivenom became available the mortality-rate (despite the high toxicity of sea-snake venom) was only 10%; however, of 11 with serious poisoning, 6 died. Subsequently 10 patients with serious poisoning received specific sea-snake antivenom; 2 patients, admitted moribund, temporarily improved but died, and 8 patients recovered dramatically. In serious poisoning the suitable dosage of intravenous sea-snake antivenom is 3000-10,000 units; in mild poisoning 1000-2000 units should suffice.
    Matched MeSH terms: Snake Bites/drug therapy
  11. Nur AS, Hamid F, Mohd Shahezwan AW, Mohd Zaki FS, Ahmad KI
    Med J Malaysia, 2020 05;75(3):216-220.
    PMID: 32467535
    INTRODUCTION: Snakebite is an important medical emergency. Antivenoms remain the only proven treatment for snake envenoming. However, the use of antivenom is associated with hypersensitivity reactions. The aims of this study were to determine the prevalence and types of hypersensitivity reactions and types and outcomes of pharmacological and non-pharmacological treatments for antivenom reactions among snakebite patients that received antivenoms.

    METHODS: This was a 4-year cross-sectional study of snakebite patients from January 2013 to December 2016 in Hospital Sultanah Nur Zahirah (HSNZ), Terengganu. Data was extracted from the Pharmacy Record on the usage of antivenom and patients of snakebites treated with antivenom were identified. Data of patients were then obtained from the electronic medical records.' Demographic details, clinical features and characteristics of antivenom reactions of patients were recorded in standardized data collection forms and analyzed using chi-square or Mann- Whitney U tests.

    RESULTS: Of the 44 patients who received antivenom, 24 (54.5%) developed hypersensitivity reaction. All patients developed reaction early. No patient developed delayed (serum-sickness) reaction. Of the 24 patients, 14 (58.3%) had moderate to severe hypersensitivity reaction and 9 (37.5%) patients had mild reactions. Only one (4.2%) patient presented with bradycardia.

    CONCLUSION: The prevalence of early hypersensitivity reaction to snake antivenom in HSNZ was relatively high. Healthcare providers should be aware of the appropriate method of preparing and administering antivenom, and the management for acute hypersensitivity reactions. This will optimize the management of snakebite and ensure patient safety.

    Matched MeSH terms: Snake Bites/drug therapy*
  12. Aye MTH, Naing T, Myint KT
    BMJ Case Rep, 2018 Sep 05;2018.
    PMID: 30185451 DOI: 10.1136/bcr-2018-225040
    We report a case of a 70-year-old farmer admitted for viper bite who presented with bilateral hyphema and angle closure attack. He was managed conservatively with topical steroids and cycloplegics. He responded well and was discharged after 2 weeks.
    Matched MeSH terms: Snake Bites/drug therapy
  13. Jamaiah I, Rohela M, Roshalina R, Undan RC
    PMID: 15916099
    The records of 284 snake bite cases presenting to the Kangar District Hospital, Perlis, west Malaysia, from January 1999 till December 2000 were carefully reviewed. Data on prevalence and types of snake bites, were recorded. The majority of the cases were among Malays (60.2%), followed by Chinese (16.9%), Indians (13%), and others which include Thai nationals, army personnel from Sabah and Sarawak, and foreign tourists (9.8%). A higher incidence was found in males (60.2%) and most cases were seen in the age group of 10-19 years (33%). Snake bites were more common between 2 PM and 9 PM (47.6%) and from 7 AM to 2 PM (33.4%). The snakes were positively identified in 68 cases, of which 50 were common cobras (Naja naja) (73%), 16 were Malayan pit vipers (Agkistrodon rhodostoma) (24%) and two were sea-snakes (3%).
    Matched MeSH terms: Snake Bites/drug therapy
  14. Tan KY, Tan CH, Fung SY, Tan NH
    J Proteomics, 2015 Apr 29;120:105-25.
    PMID: 25748141 DOI: 10.1016/j.jprot.2015.02.012
    Previous studies showed that venoms of the monocled cobra, Naja kaouthia from Thailand and Malaysia are substantially different in their median lethal doses. The intraspecific venom variations of N. kaouthia, however, have not been fully elucidated. Here we investigated the venom proteomes of N. kaouthia from Malaysia (NK-M), Thailand (NK-T) and Vietnam (NK-V) through reverse-phase HPLC, SDS-PAGE and tandem mass spectrometry. The venom proteins comprise 13 toxin families, with three-finger toxins being the most abundant (63-77%) and the most varied (11-18 isoforms) among the three populations. NK-T has the highest content of neurotoxins (50%, predominantly long neurotoxins), followed by NK-V (29%, predominantly weak neurotoxins and some short neurotoxins), while NK-M has the least (18%, some weak neurotoxins but less short and long neurotoxins). On the other hand, cytotoxins constitute the main bulk of toxins in NK-M and NK-V venoms (up to 45% each), but less in NK-T venom (27%). The three venoms show different lethal potencies that generally reflect the proteomic findings. Despite the proteomic variations, the use of Thai monovalent and Neuro polyvalent antivenoms for N. kaouthia envenomation in the three regions is appropriate as the different venoms were neutralized by the antivenoms albeit at different degrees of effectiveness.
    Matched MeSH terms: Snake Bites/drug therapy*
  15. Ho CH, Ismail AK, Liu SH, Tzeng YS, Li LY, Pai FC, et al.
    Clin Toxicol (Phila), 2021 Sep;59(9):794-800.
    PMID: 33605805 DOI: 10.1080/15563650.2021.1881535
    BACKGROUND: The incidence of acute compartment syndrome (ACS) following snakebite envenomation may be seriously overestimated in Taiwan. Snakebite-induced ACS is difficult to determine solely by clinical examination. Snakebite patients previously underwent surgical intervention based on speculation and general clinical examinations suggesting ACS presentations instead of direct intracompartmental pressure (IP) measurement prior to fasciotomy. Point-of-care ultrasound (POCUS) is a relatively widely available noninvasive tool. This study aimed to evaluate snakebite-envenomated patients for the presence of subcutaneous edema and diastolic retrograde arterial flow (DRAF).

    MATERIALS AND METHODS: Snakebite patients were prospectively recruited between 2017 and 2019. All patients were examined with POCUS to locate edema and directly visualize and measure the arterial flow in the compressed artery. The presence of DRAF in the compressed artery is suggestive of ACS development because when compartment space restriction occurs, increased retrograde arterial flow is observed in the artery.

    RESULTS: Twenty-seven snakebite patients were analyzed. Seventeen patients (63%) were bitten by Crotalinae snakes, seven (26%) by Colubridae, one (4%) by Elapidae, and two (7%) had unidentified snakebites. All Crotalinae bit patients received antivenom, had subcutaneous edema and lacked DRAF in a POCUS examination series.

    DISCUSSION: POCUS facilitates clinical decisions for snakebite envenomation. We also highlighted that the anatomic site of the snakebite is an important factor affecting the prognosis of the wounds. There were limitations of this study, including a small number of patients and no comparison with the generally accepted invasive evaluation for ACS.

    CONCLUSIONS: We are unable to state that POCUS is a valid surrogate measurement of ACS from this study but see this as a starting point to develop further research in this area. Further study will be needed to better define the utility of POCUS in patients envenomated by snakes throughout the world.

    Matched MeSH terms: Snake Bites/drug therapy*
  16. Tan KY, Tan CH, Sim SM, Fung SY, Tan NH
    Comp Biochem Physiol C Toxicol Pharmacol, 2016 Jul-Aug;185-186:77-86.
    PMID: 26972756 DOI: 10.1016/j.cbpc.2016.03.005
    The Southeast Asian monocled cobras (Naja kaouthia) exhibit geographical variations in their venom proteomes, especially on the composition of neurotoxins. This study compared the neuromuscular depressant activity of the venoms of N. kaouthia from Malaysia (NK-M), Thailand (NK-T) and Vietnam (NK-V), and the neutralization of neurotoxicity by a monospecific antivenom. On chick biventer cervicis nerve-muscle preparation, all venoms abolished the indirect twitches, with NK-T venom being the most potent (shortest t90, time to 90% twitch inhibition), followed by NK-V and NK-M. Acetylcholine and carbachol failed to reverse the blockade, indicating irreversible/pseudo-irreversible post-synaptic neuromuscular blockade. KCl restored the twitches variably (NK-M preparation being the least responsive), consistent with different degree of muscle damage. The findings support that NK-T venom has the most abundant curarimimetic alpha-neurotoxins, while NK-M venom contains more tissue-damaging cytotoxins. Pre-incubation of tissue with N. kaouthia monovalent antivenom (NKMAV) prevented venom-induced twitch depression, with the NK-T preparation needing the largest antivenom dose. NKMAV added after the onset of neuromuscular depression could only halt the inhibitory progression but failed to restore full contraction. The findings highlight the urgency of early antivenom administration to sequester as much circulating neurotoxins as possible, thereby hastening toxin elimination from the circulation. In envenomed mice, NKMAV administered upon the first neurological sign neutralized the neurotoxic effect, with the slowest full recovery noticed in the NK-T group. This is consistent with the high abundance of neurotoxins in the NK-T venom, implying that a larger amount or repeated dosing of NKMAV may be required in NK-T envenomation.
    Matched MeSH terms: Snake Bites/drug therapy*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links