Displaying publications 1 - 20 of 28 in total

Abstract:
Sort:
  1. Norazah, M.A., Rahmani, M., Khozirah, S., Ismail, H.B.M., Sukari, M.A., Ali, A.M., et al.
    MyJurnal
    The extract of Cinnamomum microphyllum showed strong antioxidant activity when it was tested against auto-oxidation of linoleic acid, superoxide, and DPPH radical scavenging activity. Further detailed investigations of the plant constituents and bioactivity studies led to the isolation and identification of known compounds consisting of three lignans, a coumarin, an ester and β-sitosterol. The structures of the compounds were determined using detailed spectroscopic analysis. The lignans were found to possess a significant antioxidant activity when tested against the three assay systems.
    Matched MeSH terms: Sitosterols
  2. Che Omar MT
    Data Brief, 2020 Dec;33:106350.
    PMID: 33083505 DOI: 10.1016/j.dib.2020.106350
    Inactivation of smoothened protein (SMO) by the antagonists in SHH-driven cancer types is essential for inhibition of cancer progression. This article presents molecular dynamics (MD) trajectories of water solution of three protein-ligand complexes smoothened-β-sitosterol (SMO-BST), smoothened-sonidegib (SMO-SNG) and smoothened-cholesterol (SMO-CLR) using CHARMM36 and SPC/E water model combination. Additionally, the work presents the topologies and trajectories of GROMACS files that were employed to analyse the protein-ligand interaction types (PyContact) and binding energy calculation (g_mmpbsa). The data demonstrated that equilibrated models of SMO-SNG and SMO-CLR complexes showed crucial residues that almost similar for interaction and contribution energy as previously reported in laboratory setup (in vitro). Initial simulations confirmed the role of ARG451 and TRP535 in the dynamic regulation of SMO. These data then were used as a reference for understanding the molecular dynamics of SMO-BST complex and thus predicted its mechanism of action.
    Matched MeSH terms: Sitosterols
  3. Majid Shah S, Ullah F, Ayaz M, Sadiq A, Hussain S, Ali Shah AU, et al.
    Steroids, 2019 08;148:56-62.
    PMID: 31085212 DOI: 10.1016/j.steroids.2019.05.001
    The current study was aimed to evaluate the anti-leishmanial potentials of β-sitosterol isolated from Ifloga spicata. The anti-leishmanial potential of β-sitosterol is well documented against Leishmania donovani and Leishmania amazonensis but unexplored against Leishmania tropica. Structure of the compound was elucidated by FT-IR, mass spectrometry and multinuclear (1H and 13C) magnetic resonance spectroscopy. The compound was evaluated for its anti-leishmanial potentials against L. tropica KWH23 using in vitro anti-promastigote, DNA interaction, apoptosis, docking studies against leishmanolysin (GP63) and trypanothione reductase (TR) receptors using MOE 2016 software. β-sitosterol exhibited significant activity against leishmania promastigotes with IC50 values of 9.2 ± 0.06 μg/mL. The standard drug glucantaime showed IC50 of 5.33 ± 0.07 µg/mL. Further mechanistic studies including DNA targeting and apoptosis induction via acridine orange assay exhibited promising anti-leishmanial potentials for β-sitosterol. Molecular docking with leishmanolysin (GP63) and trypanothione reductase (TR) receptors displayed the binding scores of β-sitosterol with targets TR and GP63 were -7.659 and -6.966 respectively. The low binding energies -61.54 (for TR) and -33.24 (for GP63) indicate that it strongly bind to the active sites of target receptors. The results confirmed that β-sitosterol have considerable anti-leishmanial potentials and need further studies as potential natural anti-leishmanial agent against L. tropica.
    Matched MeSH terms: Sitosterols/isolation & purification; Sitosterols/pharmacology*; Sitosterols/chemistry
  4. Saim N, Osman R, Sari Abg Spian DR, Jaafar MZ, Juahir H, Abdullah MP, et al.
    Water Res, 2009 Dec;43(20):5023-30.
    PMID: 19896157 DOI: 10.1016/j.watres.2009.08.052
    Faecal sterols detection is a promising method for identifying sources of faecal pollution. In this study, faecal contamination in water samples from point source (sewage treatment plants, chicken farms, quail farms and horse stables) was extracted using the solid phase extraction (SPE) technique. Faecal sterols (coprostanol, cholesterol, stigmasterol, beta-sitosterol and stigmastanol) were selected as parameters to differentiate the source of faecal pollution. The results indicated that coprostanol, cholesterol and beta-sitosterol were the most significant parameters that can be used as source tracers for faecal contamination. Chemometric techniques, such as cluster analysis, principal component analysis and discriminant analysis were applied to the data set on faecal contamination in water from various pollution sources in order to validate the faecal sterols' profiles. Cluster analysis generated three clusters: coprostanol was in cluster 1, cholesterol and beta-sitosterol formed cluster 2, while cluster 3 contained stigmasterol and stigmastanol. Discriminant analysis suggested that coprostanol, cholesterol and beta-sitosterol were the most significant parameters to discriminate between the faecal pollution source. The use of chemometric techniques provides useful and promising indicators in tracing the source of faecal contamination.
    Matched MeSH terms: Sitosterols/analysis; Sitosterols/chemistry
  5. Wong KW, Ee GCL, Ismail IS, Karunakaran T, Jong VYM
    Nat Prod Res, 2017 Nov;31(21):2513-2519.
    PMID: 28412841 DOI: 10.1080/14786419.2017.1315717
    Phytochemical studies on the stem bark of Garcinia nervosa has resulted in the discovery of one new pyranoxanthone derivative, garner xanthone (1) and five other compounds, 1,5-dihydroxyxanthone (2), 6-deoxyisojacareubin (3), 12b-hydroxy-des-D-garcigerrin A (4) stigmasterol (5), and β-sitosterol (6). The structures of these compounds were elucidated with the aid of spectroscopic techniques, such as NMR and MS. The crude extracts of the plant were assessed for their antimicrobial activity.
    Matched MeSH terms: Sitosterols/isolation & purification; Sitosterols/chemistry
  6. Toopkanloo SP, Tan TB, Abas F, Alharthi FA, Nehdi IA, Tan CP
    Nanomaterials (Basel), 2020 Dec 05;10(12).
    PMID: 33291386 DOI: 10.3390/nano10122432
    This study used highly lipophilic agents with an aim to increase the oxidant inhibitory activity and enhance photothermal stability of a novel mixed soy lecithin (ML)-based liposome by changing the composition of formulation within the membrane. Specifically, the development and optimization of the liposome intended for improving Trolox equivalent antioxidant capacity (TEAC) value and %TEAC loss was carried out by incorporating a natural antioxidant, quercetin (QU). In this context, a focus was set on QU encapsulation in ML-based liposomes and the concentration-dependent solubility of QU was investigated and calculated as encapsulation efficiency (EE). To explore the combined effects of the incorporation of plant sterols on the integrity and entrapment capacity of mixed phospholipid vesicles, conjugation of two types of phytosterols (PSs), namely β-sitosterol (βS) and stigmasterol (ST), to mixed membranes at different ratios was also performed. The EE measurement revealed that QU could be efficiently encapsulated in the stable ML-based liposome using 0.15 and 0.1 g/100 mL of βS and ST, respectively. The aforementioned liposome complex exhibited a considerable TEAC (197.23%) and enhanced TEAC loss (30.81%) when exposed to ultraviolet (UV) light (280-320 nm) over a 6 h duration. It appeared that the presence and type of PSs affect the membrane-integration characteristics as well as photodamage transformation of the ML-based liposome. The association of QU with either βS or ST in the formulation was justified by their synergistic effects on the enhancement of the EE of liposomes. Parallel to this, it was demonstrated that synergistic PS effects could be in effect in the maintenance of membrane order of the ML-based liposome. The findings presented in this study provided useful information for the development and production of stable QU-loaded ML-based liposomes for food and nutraceutical applications and could serve as a potential mixed lipids-based delivery system in the disease management using antioxidant therapy.
    Matched MeSH terms: Sitosterols
  7. Taib MNAM, Anuar N, Hanafiah KM, Al-Shammary AAK, Saaid M, Awang K
    Trop Life Sci Res, 2020 Apr;31(1):159-178.
    PMID: 32963717 DOI: 10.21315/tlsr2020.31.1.10
    Alpinia conchigera Griff. is a plant species from the family Zingiberaceae. Coloquially known as wild ginger, Alpinia conchigera Griff. is used as food condiment and for traditional treatment of skin diseases. Isolation studies to identify bioactive compounds of rhizomes of Alpinia conchigera yielded seven compounds; 1'S-1'-acetoxychavicol acetate (1), trans-p-coumaryl diacetate (2), p-hydroxycinnamyl acetate (3), 1'S-1'-hydroxychavicol acetate (4) p-hydroxybenzaldehyde (5), stigmasterol (6) and β-sitosterol (7). Compounds 1, 2 and 5 were evaluated for antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA). Among the compounds tested, Compound 1 showed good antimicrobial activity against the strain of MRSA with minimum inhibition concentration (MIC) value of 0.5 mg/mL. Meanwhile, Compounds 2 and 5 exhibited moderate activity with MIC value between 1.0 and 2.0 mg/mL. These findings indicate antimicrobial potential of 1'S-1'-acetoxychavicol acetate (1), compound derived from rhizome of Alpinia conchigera Griff. against MRSA, which warrant further investigation.
    Matched MeSH terms: Sitosterols
  8. Intan S. Ismail, NorAkmar Ismail, Nordin Lajis
    MyJurnal
    The preliminary ichthyotoxic test on all parts of Syzygium malaccense (Myrtaceae) revealed that the leaves fraction was the most ichthyotoxic against tilapia-fish (Tilapia oreochromis). Three compounds, namely ursolic acid (1), β-sitosterol (2) and sitost-4-en-3-one (3), were isolated and their structures were elucidated with the aid of spectroscopic data and comparison with previously reported investigations. However none of these compounds gave any significant ichthyotoxicity. The volatile constituents of the leaves and fruit were determined by Gas Chromatography-Mass Spectrometer (GC-MS), with 180 and 203 compounds being identified in the aroma concentrates, respectively.
    Matched MeSH terms: Sitosterols
  9. Kamisah Y, Othman F, Qodriyah HM, Jaarin K
    PMID: 23956777 DOI: 10.1155/2013/709028
    Parkia speciosa Hassk., or stink bean, is a plant indigenous to Southeast Asia. It is consumed either raw or cooked. It has been used in folk medicine to treat diabetes, hypertension, and kidney problems. It contains minerals and vitamins. It displays many beneficial properties. Its extracts from the empty pods and seeds have a high content of total polyphenol, phytosterol, and flavonoids. It demonstrates a good antioxidant activity. Its hypoglycemic effect is reported to be attributable to the presence of β -sitosterol, stigmasterol, and stigmast-4-en-3-one. The cyclic polysulfide compounds exhibit antibacterial activity, while thiazolidine-4-carboxylic acid possesses anticancer property. The pharmacological properties of the plant extract are described in this review. With ongoing research conducted on the plant extracts, Parkia speciosa has a potential to be developed as a phytomedicine.
    Matched MeSH terms: Sitosterols
  10. Syed Abdul Rahman SN, Abdul Wahab N, Abd Malek SN
    PMID: 23762112 DOI: 10.1155/2013/257108
    Bioassay-guided isolation of the active hexane fractions of Curcuma zedoaria led to the identification of five pure compounds, namely, curzerenone (1), neocurdione (2), curdione (3), alismol (4), and zederone (5) and a mixture of sterols, namely, campesterol (6), stigmasterol (7), and β -sitosterol (8). Alismol has never been reported to be present in Curcuma zedoaria. All isolated compounds except (3) were evaluated for their cytotoxic activity against MCF-7, Ca Ski, and HCT-116 cancer cell lines and noncancer human fibroblast cell line (MRC-5) using neutral red cytotoxicity assay. Curzerenone and alismol significantly inhibited cell proliferation in human cancer cell lines MCF-7, Ca Ski, and HCT-116 in a dose-dependent manner. Cytological observations by an inverted phase contrast microscope and Hoechst 33342/PI dual-staining assay showed typical apoptotic morphology of cancer cells upon treatment with curzerenone and alismol. Both compounds induce apoptosis through the activation of caspase-3. It can thus be suggested that curzerenone and alismol are modulated by apoptosis via caspase-3 signalling pathway. The findings of the present study support the use of Curcuma zedoaria rhizomes in traditional medicine for the treatment of cancer-related diseases. Thus, two naturally occurring sesquiterpenoids, curzerenone and alismol, hold great promise for use in chemopreventive and chemotherapeutic strategies.
    Matched MeSH terms: Sitosterols
  11. Muhammad SNH, Yaacob NS, Safuwan NAM, Fauzi AN
    PMID: 33906591 DOI: 10.2174/1871520621666210427104804
    BACKGROUND: Survival and progression of cancer cells are highly dependent on aerobic glycolysis. Strobilanthes crispus has been shown to have promising anticancer effects on breast cancer cells. The involvement of the glycolysis pathway in producing these effects is unconfirmed, thus further investigation is required to elucidate this phenomenon.

    OBJECTIVE: This study aims to determine the effect of S. crispus active fraction (F3) and its bioactive components on glycolysis in triple-negative breast cancer cells (MDA-MB-231).

    METHODS: This study utilizes F3, lutein, β-sitosterol, and stigmasterol to be administered in MDA-MB-231 cells for measurement of antiglycolytic activities through cell poliferation, glucose uptake, and lactate concentration assays. Cell proliferation was assessed by MTT assay of MDA-MB-231 cells after treatment with F3 and its bioactive components lutein, β-sitosterol, and stigmasterol. The IC50 value in each compound was determined by MTT assay to be used in subsequent assays. The determination of glucose uptake activity and lactate concentration were quantified using fluorescence spectrophotometry.

    RESULTS: Antiproliferative activities were observed for F3 and its bioactive components, with IC50 values of 100 µg/mL (F3), 20 µM (lutein), 25 µM (β-sitosterol), and 90 μM (stigmasterol) in MDA-MB-231 cells at 48 h. The percentage of glucose uptake and lactate concentration in MDA-MB-231 cells treated with F3, lutein, or β sitosterol were significantly lower than those observed in the untreated cells in a time-dependent manner. However, treatment with stigmasterol decreased the concentration of lactate without affecting the glucose uptake in MDA-MB-231 cells.

    CONCLUSION: The antiglycolytic activities of F3 on MDA-MB-231 cells are attributed to its bioactive components.

    Matched MeSH terms: Sitosterols
  12. Fatmawati S, Yuliana, Purnomo AS, Abu Bakar MF
    Heliyon, 2020 Jul;6(7):e04396.
    PMID: 32685725 DOI: 10.1016/j.heliyon.2020.e04396
    Cassia alata or locally known as Ketepeng Cina (Indonesia) and Gelenggang (Malaysia) has been used as a traditional medicine to treat various diseases, especially skin diseases. In addition, C. alata has been reported to have potential anti allergic, anti inflammatory, antioxidant, anticancer, antidiabetic, and antifungal. Metabolite compounds that have been isolated from C. alata include flavones, flavonols, flavonoids glycosides, alatinon, alanonal and β-sitosterol-β-D-glucoside. The compounds have been isolated mainly from the leaves. Further identification is needed to discover the secondary metabolites from other parts of the plant such as seed, flower and bark which are reported to have potent antibacterial and antifungal activity. Therefore, this article highlights the secondary metabolites and biological activity of this plant which has been shown to have pharmacological properties against selected diseases.
    Matched MeSH terms: Sitosterols
  13. Ibrahim M, Abdul Azziz SSS, Wong CF, Bakri YM, Abdullah F
    Curr Comput Aided Drug Des, 2020;16(6):698-706.
    PMID: 31648647 DOI: 10.2174/1573409915666191015112320
    BACKGROUND: Obesity is one serious health condition that contributes to various chronic diseases. The inhibition of pancreatic lipase is a promising treatment for obesity.

    OBJECTIVE: The present study was designed to investigate anti-porcine pancreatic lipase effect of isolated compounds from Aquilaria subintegra and its mechanism.

    METHODS: Compounds were isolated with serial column chromatography and their structure were identified using spectroscopic methods. Isolated compounds were tested for anti-lipase potential activity using colorimetric assay. The prediction of energy binding between isolated compounds and enzyme was described using YASARA software.

    RESULTS: Four compounds were successfully isolated from the bark of A. subintegra, namely, 5- hydroxy-7,4'-dimethoxyflavone, luteolin-7,3',4'-trimethyl ether, 5,3'-dihydroxy-7,4'-dimethoxyflavone and β-sitosterol. The results indicated that all compounds displayed promising pancreatic lipase inhibitory activity ranging between of 6% to 53% inhibition. Compound 5-hydroxy-7,4'- dimethoxyflavone was a competitive inhibitor and decreases the enzyme catalysis. Meanwhile, β- sitosterol was a non- competitive inhibitor since the latter was bind allosterically toward enzyme.

    CONCLUSION: This finding is significant for further investigation of bioactive compounds from A. subintegra on animal study.

    Matched MeSH terms: Sitosterols
  14. Ee, G.C.L., Cheow, Y.L.
    MyJurnal
    Detail chemical studies on Carcinia maingayi have yielded one xanthone, 1,3,7-trihydroxy-2-(3-methylbut-2-enyl)-xanthone, one benzophenone, isoxanthochymol, one benzoic acid derivative 3,4-dihydroxy-methylbenzoate and two triterpenoids, stigmasterol and sitosterol. Meanwhile, investigations on Carcinia parvifolia have afforded one triterpenoid, a-amyrin and two xanthones, cowanin and rubraxanthone. Their structures were derived based on spectroscopic evidence, mainly ID and 2D NMR spectroscopy. Acetylation reaction was carried out on rubraxanthone to yield triacetate rubraxanthone. It was found that the pure rubraxanthone was strongly active against the larvae of Aedes aegypti with LC50 value of 15.49 {lg/ ml and HL-60 cells line with an IC50 value of 7.5 {lg/ ml.
    Matched MeSH terms: Sitosterols
  15. Kamarulzaman, F. A., Mohamad, K., Awang, K., Lee, H. B.
    MyJurnal
    Our continuing research on the Aglaia genus (family Meliaceace) has led us to this first study on the chemical constituents of Aglaia lanuginose (bark). The dichloromethane extract from the bark of Aglaia lanuginose showed cytotoxicity against HL-60 leukaemia cell line (45% inhibition) at 20 µg/ml and was prioritised for further investigation. Repeated chromatography of the dichloromethane extract yielded the known dammarane triterpenes which were identified as cabralealactone (1), methyl eichlerianate (2), cabraleone (3), ocotillone (4), eichleriatone (5), eichlerianic acid (6) and shoreic acid (7) together with the known sterols, sitosterol (9) and stigmasterol (10). Another isolated compound was the aromatic 4-hydroxycinnamyl-acetate (8), which has not been reported to be present in a plant from the Meliaceae family. The structures of all the compounds were elucidated on the basis of spectroscopic methods (IR, MS and NMR). Cytotoxicity testing of 1-10 showed activity only for mixtures of (3, 4), and (5, 6).
    Matched MeSH terms: Sitosterols
  16. Rashed, K., Said, A., Abdo, A., Selim, S.
    MyJurnal
    This work was carried out for determining antimicrobial activity of Pistacia chinensis leaves
    methanol extract and identifying the chemical composition of the plant extract. Methanol extract
    was tested for antimicrobial activity using disc-diffusion assay and the extract was fractionated
    on silica gel column chromatography for the isolation of the bio-active constituents. The leaves
    extract of P. chinensis showed a significant antimicrobial effect, it strongly inhibited the growth
    of the test bacteria and yeast studied. Chromatograpic separation of the methanol extract of
    P. chinensis leaves has led to the isolation and characterization of β-sitosterol, luepol, and
    six flavonoids, quercetin, myricetin, quercetin 3-O-α-rhamnoside, quercetin 3-O-β-glucoside,
    myricetin 3-O-α-rhamnoside and myricetin 3-O-β-glucuronide using various chromatographic
    procedures and the interpretation of spectral data in comparison with already existing data
    reported in the literature. The results presented here may suggest that the leaves extract of P.
    chinensis possess antimicrobial properties, and therefore, can be used as natural preservative
    ingredients in food and/or pharmaceuticals.
    Matched MeSH terms: Sitosterols
  17. Ahmed, Y., Rahman, S., Akhtar, P., Islam, F., Rahman, M., Yaakob, Z.
    MyJurnal
    General phytochemical screening of the leaves of Saurauia roxburghii (Actinidiaceae) revealed the presence of alkaloids, flavonoids, glycosides, O-glycosides, terpenoids, carbohydrates, steroids, reducing sugar, tannins, phlobatannins and saponin are present in this plant whereas cardiac glycosides are absent. Two steroid compounds were isolated from the n-hexane extract of the leaves from S. roxburghii. Based on the spectral evidence IR, 1H-NMR and 13C-NMR, structures were determined to be stigmasterol (1) and β-sitosterol (2) This is the first report so far of occurrence and details spectroscopic description of these compounds from S. roxburghii.
    Matched MeSH terms: Sitosterols
  18. Guilhon CC, Abdul Wahab IR, Boylan F, Fernandes PD
    PMID: 26273315 DOI: 10.1155/2015/915927
    Pereskia bleo (Kunth) DC. (Cactaceae) is a plant commonly used in popular medicine in Malaysia. In this work, we evaluate the antinociceptive effect of P. bleo leaf extracts and isolated compounds in central antinociceptive model. Ethanol extract (E), hexane (H), ethyl acetate (EA), or butanol (B) fractions (30, 50, or 100 mg/kg, p.o.), sitosterol (from hexane) and vitexin (from ethyl acetate), were administered to mice. Antinociceptive effect was evaluated in the hot plate and capsaicin- or glutamate-induced licking models. Morphine (1 mg/kg, p.o.) was used as reference drug. Naloxone (1 mg/kg, i.p.), atropine (1 mg/kg, i.p.), and L-nitro arginine methyl ester (L-NAME, 3 mg/kg, i.p.) were administered 30 min earlier (100 mg/kg, p.o.) in order to evaluate the mechanism of the antinociceptive action. Higher dose of B developed an effect significantly superior to morphine-treated group. Naloxone prevented the antinociceptive effect of all fractions. L-NAME demonstrated effect against E, EA, and B. In all fractions, sitosterol and vitexin reduced the licking time after capsaicin injection. Glutamate-induced licking response was blocked by H, EA, and B. Our results indicate that Pereskia bleo fractions, sitosterol and vitexin, possessed a central antinociceptive effect. Part of this effect is mediated by opioid receptors and nitrergic pathway.
    Matched MeSH terms: Sitosterols
  19. Abdul-Wahab IR, Guilhon CC, Fernandes PD, Boylan F
    J Ethnopharmacol, 2012 Dec 18;144(3):741-6.
    PMID: 23099251 DOI: 10.1016/j.jep.2012.10.029
    Local communities in Malaysia consume Pereskia bleo Kunth. (Cactaceae) leaves as raw vegetables or as a concoction and drink as a tea to treat diabetes, hypertension, rheumatism, cancer-related diseases, inflammation, gastric pain, ulcers, and for revitalizing the body.
    Matched MeSH terms: Sitosterols/isolation & purification
  20. Nodeh HR, Rashidi L, Gabris MA, Gholami Z, Shahabuddin S, Sridewi N
    J Oleo Sci, 2020 Nov 01;69(11):1359-1366.
    PMID: 33055442 DOI: 10.5650/jos.ess20128
    For the very first time, the nutritional and physicochemical properties of the oil extracted from hackberry Celtis australis fruit were investigated with the aim of possible applications of such wild fruit oil. The physicochemical properties such as peroxide value, acidity, saponification, iodine value and total fat content of the extracted oil were examined extensively. The obtained results showed that peroxide value, acidity, saponification, iodine value and total fat content of the extracted oil were found to be 4.9 meq O2/kg fat, 0.9 mg KOH/g fat, 193.6 mg KOH/g fat, 141.52 mg I2/g fat and ~5%, respectively. The predominant fatty acid found in this wild fruit is linoleic acid which was calculated to be 73.38%±1.24. In addition, gamma-tocopherol (87%) and β-sitosterol (81.2%±1.08) were the major tocopherol and sterol compositions found in Celtis australis seed oil. Moreover, equivalent carbon number (ECN) analysis has indicated that the three linoleic acids are the main composition of the triacylglycerols extracted from Celtis australis. Also, the high value of omega 6 and β-sitosterol make this oil applicable in cosmetics and pharmaceutical applications.
    Matched MeSH terms: Sitosterols/analysis
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links