Displaying publications 1 - 20 of 21 in total

Abstract:
Sort:
  1. Zuhaida AA, Ali AM, Tamilselvan S, Alitheen NB, Hamid M, Noor AM, et al.
    Genet. Mol. Res., 2013;12(4):5547-59.
    PMID: 24301925 DOI: 10.4238/2013.November.18.5
    A phage display library of single chain variable fragment (scFv) against MCF-7 breast cancer cells was constructed from C3A8 hybridoma cells. RNA from the C3A8 was isolated, cDNA was constructed, and variable heavy and light immunoglobulin chain gene region were amplified using PCR. The variable heavy and light chain gene regions were combined with flexible linker, linked to a pCANTAB 5E phagemid vector and electrophoresed into supE strain of Escherichia coli TG1 cells. Forty-eight clones demonstrated positive binding activity to MCF-7 breast cancer cell membrane fragments and the strongest of 48 clones was selected for analysis. The anti-MCF-7 library evaluated by SfiI and NotI digests demonstrated that anti-MCF-7 scFv antibodies possess individual patterns that should be able to recognize distinct human breast cancer cells. The C3A8 scFv, with an apparent molecular weight of 32 kDa, showed high homology (99%) with single chain antibody against rice stripe virus protein P20. In summary, the anti MCF-7 scFv antibody can be used for pretargeting breast cancer for clinical diagnosis of patients; it also has potential for therapeutic applications.
    Matched MeSH terms: Single-Chain Antibodies/genetics; Single-Chain Antibodies/immunology*
  2. Khor BY, Lim TS, Noordin R, Choong YS
    J Mol Graph Model, 2017 09;76:543-550.
    PMID: 28811153 DOI: 10.1016/j.jmgm.2017.07.004
    De novo approach was applied to design single chain fragment variable (scFv) for BmR1, a recombinant antigen from Bm17DIII gene which is the primary antigen used for the detection of anti-BmR1 IgG4 antibodies in the diagnostic of lymphatic filariasis. Three epitopes of the BmR1 was previously predicted form an ab initio derived three-dimensional structure. A collection of energetically favourable conformations was generated via hot-spot-centric approach. This resulted in a set of three different scFv scaffolds used to compute the high shape complementary conformations via dock-and-design approach with the predicted epitopes of BmR1. A total of 4227 scFv designs were generated where 200 scFv designs produced binding energies of less than -20 R.E.U with shape complementarity higher than 0.5. We further selected the design with at least one hydrogen bond and one salt bridge with the epitope, thus resulted in a total of 10, 1 and 19 sFv designs for epitope 1, 2 and 3, respectively. The results thus showed that de novo design can be an alternative approach to yield high affinity in silico scFv designs as a starting point for antibody or specific binder discovery processes.
    Matched MeSH terms: Single-Chain Antibodies/immunology; Single-Chain Antibodies/chemistry*
  3. Chin CF, Choong YS, Lim TS
    Methods Mol Biol, 2018;1701:285-299.
    PMID: 29116511 DOI: 10.1007/978-1-4939-7447-4_15
    Antibody phage display has been widely established as the method of choice to generate monoclonal antibodies with various efficacies post hybridoma technology. This technique is a popular method which takes precedence over ease of methodology, time- and cost-savings with comparable outcomes to conventional methods. Phage display technology manipulates the genome of M13 bacteriophage to display large diverse collection of antibodies that is capable of binding to various targets (nucleic acids, peptides, proteins, and carbohydrates). This subsequently leads to the discovery of target-related antibody binders. There have been several different approaches adapted for antibody phage display over the years. This chapter focuses on the semi-automated phage display antibody biopanning method utilizing the MSIA™ streptavidin D.A.R.T's® system. The system employs the use of electronic multichannel pipettes with predefined programs to carry out the panning process. The method should also be adaptable to larger liquid handling instrumentations for higher throughput.
    Matched MeSH terms: Single-Chain Antibodies/genetics*; Single-Chain Antibodies/immunology; Single-Chain Antibodies/chemistry*
  4. Lim BN, Chin CF, Choong YS, Ismail A, Lim TS
    Toxicon, 2016 Jul;117:94-101.
    PMID: 27090555 DOI: 10.1016/j.toxicon.2016.04.032
    Antibody phage display is a useful tool for the isolation and identification of monoclonal antibodies. Naive antibody libraries are able to overcome the limitations associated with the traditional hybridoma method for monoclonal antibody generation. Antibody phage display is also a preferred method for antibody generation against toxins as it does not suffer from toxicity mediated complications. Here, we describe a naïve multi ethnic scFv antibody library generated via two-step cloning with an estimated diversity of 2 × 10(9). The antibody library was used to screen for monoclonal antibodies against Hemolysin E antigen, a pore forming toxin produced by Salmonella enterica serovar Typhi. A soluble monoclonal scFv antibody against the HlyE toxin (IgM scFv D7 anti-hlyE) was isolated from the library. This shows the value of the naïve library to generate antibodies against toxin targets in addition to the potential use of the library to isolate antibodies against other immunogenic targets.
    Matched MeSH terms: Single-Chain Antibodies/immunology*; Single-Chain Antibodies/isolation & purification
  5. Lee W, Syed A A, Leow CY, Tan SC, Leow CH
    Anal Biochem, 2018 08 15;555:81-93.
    PMID: 29775561 DOI: 10.1016/j.ab.2018.05.009
    Anti-salbutamol antibodies remain as important tools for the detection of salbutamol abuse in athletic doping. This study evaluated the feasibility and efficiency of the chicken (Gallus gallus domesticus) as an immunization host to generate anti-salbutamol scFv antibodies by phage display. A phage display antibody library was constructed from a single chicken immunized against salbutamol-KLH conjugate. After a stringent biopanning strategy, a novel scFv clone which was inhibited by free salbutamol recorded the highest affinity. This scFv was expressed as soluble and functional protein in Escherichia coli T7 SHuffle Express B (DE3) strain. Cross-reactivity studies of the scFv towards other relevant β2-agonists revealed that the scFv cross-reacted significantly towards clenbuterol. The determined IC50 of the scFv towards the two β2-agonists were; IC50 salbutamol = ∼0.310 μg/ml, IC50 clenbuterol = ∼0.076 μg/ml. The generated scFv demonstrated poor stability based on accelerated stability studies. The scFv was used to develop an competitive indirect ELISA (LOD = 0.125 μg/ml) for detection of parent salbutamol in spiked human urine (n = 18) with ∼83.4% reliability at the cut-off of 1 μg/ml currently implemented by WADA and may be of potential use in human doping urinalysis.
    Matched MeSH terms: Single-Chain Antibodies/genetics; Single-Chain Antibodies/chemistry*
  6. Hamidon NH, Suraiya S, Sarmiento ME, Acosta A, Norazmi MN, Lim TS
    Appl Biochem Biotechnol, 2018 Mar;184(3):852-868.
    PMID: 28884285 DOI: 10.1007/s12010-017-2582-5
    B cells and in particular antibodies has always played second fiddle to cellular immunity in regard to tuberculosis (TB). However, recent studies has helped position humoral immunity especially antibodies back into the foray in relation to TB immunity. Therefore, the ability to correlate the natural antibody responses of infected individuals toward TB antigens would help strengthen this concept. Phage display is an intriguing approach that can be utilized to study antibody-mediated responses against a particular infection via harvesting the B cell repertoire from infected individuals. The development of disease-specific antibody libraries or immune libraries is useful to better understand antibody-mediated immune responses against specific disease antigens. This study describes the generation of an immune single-chain variable fragment (scFv) library derived from TB-infected individuals. The immune library with an estimated diversity of 109 independent clones was then applied for the identification of monoclonal antibodies against Mycobacterium tuberculosis α-crystalline as a model antigen. Biopanning of the library isolated three monoclonal antibodies with unique gene usage. This strengthens the role of antibodies in TB immunity in addition to the role played by cellular immunity. The developed library can be applied against other TB antigens and aid antibody-derived TB immunity studies in the future.
    Matched MeSH terms: Single-Chain Antibodies/genetics; Single-Chain Antibodies/immunology*
  7. Ch'ng ACW, Hamidon NHB, Konthur Z, Lim TS
    Methods Mol Biol, 2018;1701:301-319.
    PMID: 29116512 DOI: 10.1007/978-1-4939-7447-4_16
    The application of recombinant human antibodies is growing rapidly mainly in the field of diagnostics and therapeutics. To identify antibodies against a specific antigen, panning selection is carried out using different display technologies. Phage display technology remains the preferred platform due to its robustness and efficiency in biopanning experiments. There are both manual and semi-automated panning selections using polystyrene plastic, magnetic beads, and nitrocellulose as the immobilizing solid surface. Magnetic nanoparticles allow for improved antigen binding due to their large surface area. The Kingfisher Flex magnetic particle processing system was originally designed to aid in RNA, DNA, and protein extraction using magnetic beads. However, the system can be programmed for antibody phage display panning. The automation allows for a reduction in human error and improves reproducibility in between selections with the preprogrammed movements. The system requires minimum human intervention to operate; however, human intervention is needed for post-panning steps like phage rescue. In addition, polyclonal and monoclonal ELISA can be performed using the semi-automated platform to evaluate the selected antibody clones. This chapter will summarize the suggested protocol from the panning stage till the monoclonal ELISA evaluation. Other than this, important notes on the possible optimization and troubleshooting are also included at the end of this chapter.
    Matched MeSH terms: Single-Chain Antibodies/genetics*; Single-Chain Antibodies/chemistry*
  8. Abdul Kadir FFN, Che Nordin MA, S M N Mydin RB, Choong YS, Che Omar MT
    J Biomol Struct Dyn, 2024;42(22):12293-12303.
    PMID: 37837430 DOI: 10.1080/07391102.2023.2269254
    Elevated interleukin 8 (IL-8) expression has been linked to unfavorable outcomes in a range of inflammatory conditions, such as rheumatoid arthritis, psoriasis, and cancer. The human monoclonal antibody (HuMab) 10F8 and the hybridoma 35B11-B bind to an epitope on human IL-8, respectively. 10F8 inhibited interaction between IL-8 and neutrophils in eczema and pustulosis palmoplantaris patients while 35B11-B decreased size lesion in rat model. The binding interaction of monoclonal antibodies and IL-8, especially how complementarity-determining region (CDR) loops could bind the N-terminal of IL-8, has not been fully deliberated at molecular-level. Here, we used a combination of molecular docking, heated and long coarse-grained molecular dynamics simulations to identify key residues of established interaction. Based on heated MD simulation, docked pose of complexes generated by ClusPro showed good binding stability throughout of 70 ns simulation. Based on long molecular dynamic simulations, key residues for the binding were identified throughout of 1000 ns simulation. TYR-53, ASP-99, and ARG-100 of heavy chain CDR together with TYR-33 of light chain CDR are among the highest contributing energy residues within the binding interaction. Meanwhile, LYS11 and TYR13 of IL-8 are important for the determination of overall binding energy. Furthermore, the result of decomposition residues analysis is in good agreement with the interaction analysis data. Current study provides a list of important interacting residues and further scrutiny on these residues is essential for future development and design of a new and stable recombinant antibody against IL-8.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Single-Chain Antibodies/immunology; Single-Chain Antibodies/chemistry
  9. Camacho F, Sarmiento ME, Reyes F, Kim L, Huggett J, Lepore M, et al.
    Int J Mycobacteriol, 2016 06;5(2):120-7.
    PMID: 27242221 DOI: 10.1016/j.ijmyco.2015.12.002
    OBJECTIVE/BACKGROUND: The development of new tools capable of targeting Mycobacterium tuberculosis (Mtb)-infected cells have potential applications in diagnosis, treatment, and prevention of tuberculosis. In Mtb-infected cells, CD1b molecules present Mtb lipids to the immune system (Mtb lipid-CD1b complexes). Because of the lack of CD1b polymorphism, specific Mtb lipid-CD1b complexes could be considered as universal Mtb infection markers. 2-Stearoyl-3-hydroxyphthioceranoyl-2'-sulfate-α-α'-d-trehalose (Ac2SGL) is specific for Mtb, and is not present in other mycobacterial species. The CD1b-Ac2SGL complexes are expressed on the surface of human cells infected with Mtb. The aim of this study was to generate ligands capable of binding these CD1b-Ac2SGL complexes.

    METHODS: A synthetic human scFv phage antibody library was used to select phage-displayed antibody fragments that recognized CD1b-Ac2SGL using CD1b-transfected THP-1 cells loaded with Ac2SGL.

    RESULTS: One clone, D11-a single, light-variable domain (kappa) antibody (dAbκ11)-showed high relative binding to the Ac2SGL-CD1b complex.

    CONCLUSION: A ligand recognizing the Ac2SGL-CD1b complex was obtained, which is a potential candidate to be further tested for diagnostic and therapeutic applications.

    Matched MeSH terms: Single-Chain Antibodies/genetics*; Single-Chain Antibodies/immunology
  10. Rahumatullah A, Ahmad A, Noordin R, Lim TS
    Mol Immunol, 2015 Oct;67(2 Pt B):512-23.
    PMID: 26277276 DOI: 10.1016/j.molimm.2015.07.040
    Phage display technology is an important tool for antibody generation or selection. This study describes the development of a scFv library and the subsequent analysis of identified monoclonal antibodies against BmSXP, a recombinant antigen for lymphatic filariasis. The immune library was generated from blood of lymphatic filariasis infected individuals. A TA based intermediary cloning approach was used to increase cloning efficiency for the library construction process. A diverse immune scFv library of 10(8) was generated. Six unique monoclonal antibodies were identified from the 50 isolated clones against BmSXP. Analysis of the clones showed a bias for the IgHV3 and Vκ1 (45.5%) and IgHV2 and Vκ3 (27.3%) gene family. The most favored J segment for light chain is IgKJ1 (45.5%). The most favored D and J segment for heavy chain are IgHD6-13 (75%) and IgHJ3 (47.7%). The information may suggest a predisposition of certain V genes in antibody responses against lymphatic filariasis.
    Matched MeSH terms: Single-Chain Antibodies/genetics; Single-Chain Antibodies/immunology*; Single-Chain Antibodies/chemistry
  11. Leong SW, Lim TS, Ismail A, Choong YS
    J. Mol. Recognit., 2018 05;31(5):e2695.
    PMID: 29230887 DOI: 10.1002/jmr.2695
    With the development of de novo binders for protein targets from non-related scaffolds, many possibilities for therapeutics and diagnostics have been created. In this study, we described the use of de novo design approach to create single-chain fragment variable (scFv) for Salmonella enterica subspecies enterica serovar Typhi TolC protein. Typhoid fever is a global health concern in developing and underdeveloped countries. Rapid typhoid diagnostics will improve disease management and therapy. In this work, molecular dynamics simulation was first performed on a homology model of TolC protein in POPE membrane bilayer to obtain the central structure that was subsequently used as the target for scFv design. Potential hotspot residues capable of anchoring the binders to the target were identified by docking "disembodied" amino acid residues against TolC surface. Next, scFv scaffolds were selected from Protein Data Bank to harbor the computed hotspot residues. The hotspot residues were then incorporated into the scFv scaffold complementarity determining regions. The designs recapitulated binding energy, shape complementarity, and interface surface area of natural protein-antibody interfaces. This approach has yielded 5 designs with high binding affinity against TolC that may be beneficial for the future development of antigen-based detection agents for typhoid diagnostics.
    Matched MeSH terms: Single-Chain Antibodies/chemistry*
  12. Chia KY, Ng KY, Koh RY, Chye SM
    CNS Neurol Disord Drug Targets, 2018;17(9):671-679.
    PMID: 29546836 DOI: 10.2174/1871527317666180315161626
    BACKGROUND & OBJECTIVE: Protein misfolding and aggregation have been considered the common pathological hallmarks for a number of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). These abnormal proteins aggregates damage mitochondria and induce oxidative stress, resulting in neuronal cell death. Prolonged neuronal damage activates microglia and astrocytes, development of inflammation reaction and further promotes neurodegeneration. Thus, elimination of abnormal protein aggregates without eliciting any adverse effects are the main treatment strategies. To overcome this, recent studies have deployed single- chain fragment variable antibodies (scFvs) to target the pathological protein aggregates, such as amyloid-beta (Aβ) peptides, α-synuclein (α-syn) and Huntingtin (Htt). To date scFv has been effective at inhibiting abnormal protein aggregates formation in both in vitro and in vivo model system of AD, PD and HD.

    CONCLUSION: Currently active research is still ongoing to improve the scFv gene delivery technology, to further enhance brain penetration, intracellular stability, solubility and efficacy of scFv intrabody.

    Matched MeSH terms: Single-Chain Antibodies/therapeutic use*
  13. Rahumatullah A, Balachandra D, Noordin R, Baharudeen Z, Lim YY, Choong YS, et al.
    Sci Rep, 2021 01 28;11(1):2502.
    PMID: 33510342 DOI: 10.1038/s41598-021-82125-3
    Antibodies have different chemical properties capable of targeting a diverse nature of antigens. Traditionally, immune antibody libraries are perceived to be disease-specific with a skewed repertoire. The complexity during the generation of a combinatorial antibody library allows for a skewed but diverse repertoire to be generated. Strongyloides stercoralis is a parasite that causes strongyloidiasis, a potentially life-threatening disease with a complex diagnosis that impedes effective control and treatment of the disease. This study describes the isolation of monoclonal antibodies against S. stercoralis NIE recombinant protein using an immune antibody phage display library derived from lymphatic filaria-infected individuals. The isolated antibody clones showed both lambda and kappa light chains gene usage, with diverse amino acid distributions. Structural analysis showed that electropositivity and the interface area could determine the binding affinity of the clones with NIE. The successful identification of S. stercoralis antibodies from the filarial immune library highlights the breadth of antibody gene diversification in an immune antibody library that can be applied for closely related infections.
    Matched MeSH terms: Single-Chain Antibodies/genetics; Single-Chain Antibodies/immunology*; Single-Chain Antibodies/isolation & purification; Single-Chain Antibodies/chemistry
  14. Rahumatullah A, Abdul Karim IZ, Noordin R, Lim TS
    Int J Mol Sci, 2017 Nov 22;18(11).
    PMID: 29165352 DOI: 10.3390/ijms18112376
    Helminth parasite infections are significantly impacting global health, with more than two billion infections worldwide with a high morbidity rate. The complex life cycle of the nematodes has made host immune response studies against these parasites extremely difficult. In this study, we utilized two phage antibody libraries; the immune and naïve library were used to identify single chain fragment variable (scFv) clones against a specific filarial antigen (BmR1). The V-gene analysis of isolated scFv clones will help shed light on preferential VDJ gene segment usage against the filarial BmR1 antigen in healthy and infected states. The immune library showed the usage of both lambda and kappa light chains. However, the naïve library showed preferential use of the lambda family with different amino acid distributions. The binding characteristics of the scFv clones identified from this work were analyzed by immunoassay and immunoaffinity pull down of BmR1. The work highlights the antibody gene usage pattern of a naïve and immune antibody library against the same antigen as well as the robust nature of the enriched antibodies for downstream applications.
    Matched MeSH terms: Single-Chain Antibodies/genetics; Single-Chain Antibodies/immunology
  15. Lim CC, Woo PCY, Lim TS
    Sci Rep, 2019 Apr 15;9(1):6088.
    PMID: 30988390 DOI: 10.1038/s41598-019-42628-6
    Antibody phage display has been pivotal in the quest to generate human monoclonal antibodies for biomedical and research applications. Target antigen preparation is a main bottleneck associated with the panning process. This includes production complexity, downstream purification, quality and yield. In many instances, purified antigens are preferred for panning but this may not be possible for certain difficult target antigens. Here, we describe an improved procedure of affinity selection against crude or non-purified antigen by saturation of non-binders with blocking agents to promote positive binder enrichment termed as Yin-Yang panning. A naïve human scFv library with kappa light chain repertoire with a library size of 109 was developed. The improved Yin-Yang biopanning process was able to enrich monoclonal antibodies specific to the MERS-CoV nucleoprotein. Three unique monoclonal antibodies were isolated in the process. The Yin-Yang biopanning method highlights the possibility of utilizing crude antigens for the isolation of monoclonal antibodies by phage display.
    Matched MeSH terms: Single-Chain Antibodies/immunology; Single-Chain Antibodies/isolation & purification
  16. Jiemy WF, Hiew LF, Sha HX, In LLA, Hwang JS
    BMC Biotechnol, 2020 Jun 17;20(1):31.
    PMID: 32552895 DOI: 10.1186/s12896-020-00628-9
    BACKGROUND: Immunotoxin is a hybrid protein consisting of a toxin moiety that is linked to a targeting moiety for the purpose of specific elimination of target cells. Toxins used in traditional immunotoxins are practically difficult to be produced in large amount, have poor tissue penetration and a complex internalization process. We hypothesized that the smaller HALT-1, a cytolysin derived from Hydra magnipapillata, can be used as the toxin moiety in construction of a recombinant immunotoxin.

    RESULTS: In this study, pro-inflammatory macrophage was selected as the target cell due to its major roles in numerous inflammatory and autoimmune disorders. We aimed to construct macrophage-targeted recombinant immunotoxins by combining HALT-1 with anti-CD64-scFv in two orientations, and to assess whether their cytotoxic activity and binding capability could be preserved upon molecular fusion. The recombinant immunotoxins, HALT-1-scFv and scFv-HALT-1, were successfully constructed and expressed in Escherichia coli (E. coli). Our data showed that HALT-1 still exhibited significant cytotoxicity against CD64+ and CD64- cell lines upon fusion with anti-CD64 scFv, although it had half cytotoxic activity as compared to HALT-1 alone. As positioning HALT-1 at N- or C-terminus did not affect its potency, the two constructs demonstrated comparable cytotoxic activities with IC50 lower in CD64+ cell line than in CD64- cell line. In contrast, the location of targeting moieties anti-CD64 scFv at C-terminal end was crucial in maintaining the scFv binding capability.

    CONCLUSIONS: HALT-1 could be fused with anti-CD64-scFv via a fsexible polypeptide linker. Upon the successful production of this recombinant HALT-1 scFv fusion protein, HALT-1 was proven effective for killing two human cell lines. Hence, this preliminary study strongly suggested that HALT-1 holds potential as the toxin moiety in therapeutic cell targeting.

    Matched MeSH terms: Single-Chain Antibodies
  17. Jee PF, Chen FS, Shu MH, Wong WF, Abdul Rahim R, AbuBakar S, et al.
    Biotechnol Prog, 2017 Jan;33(1):154-162.
    PMID: 27802566 DOI: 10.1002/btpr.2400
    Heterologous protein displayed on the surface of Lactococcus lactis using the binding domain of N-acetylmuramidase (AcmA) has a potential application in vaccine delivery. In this study, we developed a non-recombinant L. lactis surface displaying the influenza A (H1N1) 2009 hemagglutinin (HA1). Three recombinant proteins, HA1/L/AcmA, HA1/AcmA, and HA1 were overexpressed in Escherichia coli, and purified. In the binding study using flow cytometry, the HA1/L/AcmA, which contained the single-chain variable fragment (scFv) peptide linker showed significantly higher percentage of binding counts and mean fluorescence binding intensity (MFI) (51.7 ± 1.4% and 3,594.0 ± 675.9, respectively) in comparison to the HA1/AcmA without the scFv peptide linker (41.1 ± 1.5% and 1,652.0 ± 34.1, respectively). Higher amount of HA1/L/AcmA (∼2.9 × 10(4) molecules per cell) was displayed on L. lactis when compared to HA1/AcmA (∼1.1 × 10(4) molecules per cell) in the immunoblotting analysis. The HA1/L/AcmA completely agglutinated RBCs at comparable amount of protein to that of HA1/AcmA and HA1. Computational modeling of protein structures suggested that scFv peptide linker in HA1/L/AcmA kept the HA1 and the AcmA domain separated at a much longer distance in comparison to HA1/AcmA. These findings suggest that insertion of the scFv peptide linker between HA1 and AcmA improved binding of recombinant proteins to L. lactis. Hence, insertion of scFv peptide linker can be further investigated as a potential approach for improvement of heterologous proteins displayed on the surface of L. lactis using the AcmA binding domain. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:154-162, 2017.
    Matched MeSH terms: Single-Chain Antibodies
  18. Munisvaradass R, Kumar S, Govindasamy C, Alnumair KS, Mok PL
    Int J Mol Sci, 2017 Sep 08;18(9).
    PMID: 28885562 DOI: 10.3390/ijms18091797
    Breast cancer is a common malignancy among women. The innate and adaptive immune responses failed to be activated owing to immune modulation in the tumour microenvironment. Decades of scientific study links the overexpression of human epidermal growth factor receptor 2 (ERBB2) antigen with aggressive tumours. The Chimeric Antigen Receptor (CAR) coding for specific tumour-associated antigens could initiate intrinsic T-cell signalling, inducing T-cell activation, and cytotoxic activity without the need for major histocompatibility complex recognition. This renders CAR as a potentially universal immunotherapeutic option. Herein, we aimed to establish CAR in CD3+ T-cells, isolated from human peripheral blood mononucleated cells that could subsequently target and induce apoptosis in the ERBB2 overexpressing human breast cancer cell line, SKBR3. Constructed CAR was inserted into a lentiviral plasmid containing a green fluorescent protein tag and produced as lentiviral particles that were used to transduce activated T-cells. Transduced CAR-T cells were then primed with SKBR3 cells to evaluate their functionality. Results showed increased apoptosis in SKBR3 cells co-cultured with CAR-T cells compared to the control (non-transduced T-cells). This study demonstrates that CAR introduction helps overcome the innate limitations of native T-cells leading to cancer cell apoptosis. We recommend future studies should focus on in vivo cytotoxicity of CAR-T cells against ERBB2 expressing tumours.
    Matched MeSH terms: Single-Chain Antibodies/genetics; Single-Chain Antibodies/immunology; Single-Chain Antibodies/metabolism
  19. Lim CC, Chan SK, Lim YY, Ishikawa Y, Choong YS, Nagaoka Y, et al.
    Mol Immunol, 2021 07;135:191-203.
    PMID: 33930714 DOI: 10.1016/j.molimm.2021.04.016
    The murine double minute 2 (MDM2) protein is a major negative regulator of the tumour suppressor protein p53. Under normal conditions, MDM2 constantly binds to p53 transactivation domain and/or ubiquinates p53 via its role as E3 ubiquitin ligase to promote p53 degradation as well as nuclear export to maintain p53 levels in cells. Meanwhile, amplification of MDM2 and appearance of MDM2 spliced variants occur in many tumours and normal tissues making it a prognostic indicator for human cancers. The mutation or deletion of p53 protein in half of human cancers inactivates its tumour suppressor activity. However, cancers with wild type p53 have its function effectively inhibited through direct interaction with MDM2 oncoprotein. Here, we described the construction of a MDM2 spliced variant (rMDM215kDa) consisting of SWIB/MDM2 domain and its central region for antibody generation. Biopanning with a human naïve scFv library generated four scFv clones specific to rMDM215kDa. Additionally, the selected scFv clones were able to bind to the recombinant full length MDM2 (rMDM2-FL). Computational prediction showed that the selected scFv clones potentially bind to exon 7-8 of MDM2 while leaving the MDM2/SWIB domain free for p53 interaction. The developed antibodies exhibit good specificity can be further investigated for downstream biomedical and research applications.
    Matched MeSH terms: Single-Chain Antibodies/immunology*
  20. Lai JY, Loh Q, Choong YS, Lim TS
    Biotechniques, 2018 11;65(5):269-274.
    PMID: 30394125 DOI: 10.2144/btn-2018-0031
    Gene assembly methods are an integral part of molecular cloning experiments. The majority of existing vector assembly methods stipulate a need for exonucleases, endonucleases and/or the use of single-stranded DNA as starting materials. Here, we introduced a vector assembly method that employs conventional PCR to amplify stable double-stranded DNA fragments and assembles them into functional vectors specifically for antibody chain shuffling. We successfully formed vectors using cassettes amplified from different templates and assembled an array of single chain fragment variable clones of fixed variable heavy chain, with different variable light chains - a chain shuffling process for antibody maturation. The method provides an easy alternative to the conventional cloning process.
    Matched MeSH terms: Single-Chain Antibodies/genetics
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links