Displaying all 4 publications

Abstract:
Sort:
  1. Leow CY, Willis C, Osman A, Mason L, Simon A, Smith BJ, et al.
    FEBS J, 2014 Feb;281(4):1209-25.
    PMID: 24428567 DOI: 10.1111/febs.12700
    Schistosomiasis is a major parasitic disease of humans, second only to malaria in its global impact. The disease is caused by digenean trematodes that infest the vasculature of their human hosts. These flukes are limited externally by a body wall composed of a syncytial epithelium, the apical surface membrane of which is a parasitism-adapted dual membrane complex. Annexins are thought to be of integral importance for the stability of this apical membrane system. Here, we present the first structural and immunobiochemical characterization of an annexin from Schistosoma mansoni. The crystal structure of annexin B22 confirms the presence of the previously predicted α-helical segment in the II/III linker and reveals a covalently linked head-to-head dimer. From the calcium-bound crystal structure of this protein, canonical type II, type III and B site positions are occupied, and a novel binding site has been identified. The dimer arrangement observed in the crystal structure suggests the presence of two prominent features, a potential non-canonical membrane binding site and a potential binding groove opposite to the former. Results from transcriptional profiling during development show that annexin B22 expression is correlated with life stages of the parasite that possess the syncytial tegument layer, and ultrastructural localization by immuno-electron microscopy confirms the occurrence of annexins in the tegument of S. mansoni. Data from membrane binding and aggregation assays indicate the presence of differential molecular mechanisms and support the hypothesis of annexin B22 providing structural integrity in the tegument.
    Matched MeSH terms: Schistosoma mansoni/immunology
  2. Chuah C, Jones MK, Burke ML, McManus DP, Gobert GN
    Trends Parasitol, 2014 Mar;30(3):141-50.
    PMID: 24433721 DOI: 10.1016/j.pt.2013.12.009
    In hepatic schistosomiasis, pathology arises when schistosome eggs become lodged in the host liver, evoking an interleukin 4 (IL-4)- and IL-13-mediated dominant CD4(+) Th2 immune response. This response leads to the development of granulomas and fibrosis, with eosinophils, neutrophils, macrophages, hepatic stellate cells, and lymphocytes all identified as major cellular contributors to these events. This review outlines the cellular and molecular mechanisms of hepatic schistosomiasis, with an emphasis on the major cellular components and their release of chemokines. The differences between Schistosoma mansoni- and Schistosoma japonicum-induced hepatic granuloma are also discussed. This comprehensive overview of the processes associated with hepatic schistosomiasis may provide new insights into improved treatment for both schistosomiasis and other granulofibrotic diseases.
    Matched MeSH terms: Schistosoma mansoni/immunology
  3. Leow CY, Willis C, Chuah C, Leow CH, Jones M
    Parasite Immunol., 2020 03;42(3):e12693.
    PMID: 31880816 DOI: 10.1111/pim.12693
    AIMS: Schistosomes infect approximately 250 million people worldwide. To date, there is no effective vaccine available for the prevention of schistosome infection in endemic regions. There remains a need to develop means to confer long-term protection of individuals against reinfection. In this study, an annexin, namely annexin B30, which is highly expressed in the tegument of Schistosoma mansoni was selected to evaluate its immunogenicity and protective efficacy in a mouse model.

    METHODS AND RESULTS: Bioinformatics analysis showed that there were three potential linear B-cell epitopes and four conformational B-cell epitopes predicted from annexin B30, respectively. Full-length annexin B30 was cloned and expressed in Escherichia coli BL21(DE3). In the presence of adjuvants, the soluble recombinant protein was evaluated for its protective efficacy in two independent vaccine trials. Immunization of CBA mice with recombinant annexin B30 formulated either in alum only or alum/CpG induced a mixed Th1/Th2 cytokine profile but no significant protection against schistosome infection was detected.

    CONCLUSION: Recombinant annexin B30 did not confer significant protection against the parasite. The molecule may not be suitable for vaccine development. However, it could be an ideal biomarker recommended for immunodiagnostics development.

    Matched MeSH terms: Schistosoma mansoni/immunology*
  4. Khan MB, Sonaimuthu P, Lau YL, Al-Mekhlafi HM, Mahmud R, Kavana N, et al.
    Parasit Vectors, 2014;7:505.
    PMID: 25388913 DOI: 10.1186/s13071-014-0505-7
    The neglected tropical diseases, echinococcosis, schistosomiasis and toxoplasmosis are all globally widespread zoonotic diseases with potentially harmful consequences. There is very limited data available on the prevalence of these infections, except for schistosmiasis, in underdeveloped countries. This study aimed to determine the seroprevalence of Echinococcus multilocularis, Schistosoma mansoni, and Toxoplasma gondii antibodies in populations from the Monduli and Babati districts in Tanzania.
    Matched MeSH terms: Schistosoma mansoni/immunology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links