This study was designed to evaluate the tolerance of Clarias gariepinus juveniles to a gradual and abrupt increase in salinity over time. To this effect, C. gariepinus juveniles were exposed to three salinity incremental protocols namely 1 g L-1 day-1, 5 g L-1 day-1, and 10 g L-1 day-1. Changes in the hematological parameters and the gill histology of fish were analyzed to determine the impact of osmotic stress on the health status of the fish and its osmoregulatory ability. The result obtained showed that juveniles of C. gariepinus can tolerate salinity stress up to 14 g L-1. At 15 g L-1 and beyond, all samples died regardless of gradual (i.e., 1 g L-1 day-1 administered for 15 days) or abrupt salinity exposure (i.e., 5 g L-1 day-1 administered for three days and 10 g L-1 day-1 administered for two days). Interestingly, more than 90% of the fish survived a direct 10 g L-1 exposure for 24 h without prior acclimation. The hematological parameters accessed in the fish exposed to 10 g L-1 (either gradually or abruptly) showed a significant increase in the white blood cells and a decrease in the red blood cells, packed cell volume, hemoglobin concentration, and all derived blood parameters. The results of the serum biochemistry show a lower total protein and albumin in the salinity-treated fish compared to the control group. However, the serum glucose and the plasma electrolytes (i.e., K+, Na+, and Cl-) were higher in the former group than in the latter. Aside from the stress response expressed in the blood parameters, severe gill degenerations were seen in the histological micrograph obtained for the salinity-treated fish, while the control had a near-normal gill architecture. It was concluded that C. gariepinus could tolerate salinity exposure of 10 g L-1 day-1 (administered gradually or abruptly) and below without killing the fish within 24 h.
Salinisation of soil is associated with urban pollution, industrial development and rising sea level. Understanding how high salinity is managed at the plant cellular level is vital to increase sustainable farming output. Previous studies focus on plant stress responses under salinity tolerance. Yet, there is limited knowledge about the mechanisms involved from stress state until the recovery state; our research aims to close this gap. By using the most tolerance genotype (SS1-14) and the most susceptible genotype (SS2-18), comparative physiological, metabolome and post-harvest assessments were performed to identify the underlying mechanisms for salinity stress recovery in plant cells. The up-regulation of glutamine, asparagine and malonic acid were found in recovered-tolerant genotype, suggesting a role in the regulation of panicle branching and spikelet formation for survival. Rice could survive up to 150 mM NaCl (∼15 ds/m) with declined of production rate 5-20% ranged from tolerance to susceptible genotype. This show that rice farming may still be viable on the high saline affected area with the right selection of salt-tolerant species, including glycophytes. The salt recovery biomarkers identified in this study and the adaption underlined could be empowered to address salinity problem in rice field.
Purslane (Portulaca oleracea L.) is an herbaceous leafy vegetable crop, comparatively more salt-tolerant than any other vegetables with high antioxidants, minerals, and vitamins. Salt-tolerant crop variety development is of importance due to inadequate cultivable land and escalating salinity together with population pressure. In this view a total of 25 purslane accessions were initially selected from 45 collected purslane accessions based on better growth performance and subjected to 5 different salinity levels, that is, 0.0, 10.0, 20.0, 30.0, and 40.0 dS m(-1) NaCl. Plant height, number of leaves, number of flowers, and dry matter contents in salt treated purslane accessions were significantly reduced (P ≤ 0.05) and the enormity of reduction increased with increasing salinity stress. Based on dry matter yield reduction, among all 25 purslane accessions 2 accessions were graded as tolerant (Ac7 and Ac9), 6 accessions were moderately tolerant (Ac3, Ac5, Ac6, Ac10, Ac11, and Ac12), 5 accessions were moderately susceptible (Ac1, Ac2, Ac4, Ac8, and Ac13), and the remaining 12 accessions were susceptible to salinity stress and discarded from further study. The selected 13 purslane accessions could assist in the identification of superior genes for salt tolerance in purslane for improving its productivity and sustainable agricultural production.
Selection of salt tolerant rice varieties has a huge impact on global food supply chain. Five Malaysian rice (Oryza sativa L.) varieties, MR33, MR52, MR211, MR219 and MR232 were tested in pot experiment under different salinity levels for their response in term of vegetative growth, physiological activities, development of yield components and grain yield. Rice varieties, BRRI dhan29 and IR20 were used as a salt-sensitive control and Pokkali was used as a salt-tolerant control. Three different salinity levels viz. 4, 8, and 12 dS m(-1) were used in a randomized complete block design with four replications under glass house conditions. Two Malaysia varieties, MR211 and MR232 performed better in terms of vegetative growth (plant height, leaf area plant(-1), number of tillers plant(-1), dry matter accumulation plant(-1)), photosynthetic rate, transpiration rate, yield components, grain yield and injury symptoms. While, MR33, MR52 and MR219 verities were able to withstand salinity stress over salt-sensitive control, BRRI dhan29 and IR20.
Land and water resources are becoming scarce and are insufficient to sustain the burgeoning population. Salinity is one of the most important abiotic stresses affecting agricultural productions across the world. Cultivation of salt-tolerant turfgrass species may be promising option under such conditions where poor quality water can also be used for these crops. Coastal lands in developing countries can be used to grow such crops, and seawater can be used for irrigation of purposes. These plants can be grown using land and water unsuitable for conventional crops and can provide food, fuel, fodder, fibber, resin, essential oils, and pharmaceutical products and can be used for landscape reintegration. There are a number of potential turfgrass species that may be appropriate at various salinity levels of seawater. The goal of this review is to create greater awareness of salt-tolerant turfgrasses, their current and potential uses, and their potential use in developing countries. The future for irrigating turf may rely on the use of moderate- to high-salinity water and, in order to ensure that the turf system is sustainable, will rely on the use of salt-tolerant grasses and an improved knowledge of the effects of salinity on turfgrasses.
Salinity causes the adverse effects in all physiological processes of plants. The present study aimed to investigate the potential of salt stress to enhance the accumulation of the anticancer phytochemicals in Andrographis paniculata accessions. For this purpose, 70-day-old plants were grown in different salinity levels (0.18, 4, 8, 12, and 16 dSm(-1)) on sand medium. After inducing a period of 30-day salinity stress and before flowering, all plants were harvested and the data on morphological traits, proline content and the three anticancer phytochemicals, including andrographolide (AG), neoandrographolide (NAG), and 14-deoxy-11,12-didehydroandrographolide (DDAG), were measured. The results indicated that salinity had a significant effect on the aforementioned three anticancer phytochemicals. In addition, the salt tolerance index (STI) was significantly decreased, while, except for DDAG, the content of proline, the AG, and NAG was significantly increased (P ≤ 0.01). Furthermore, it was revealed that significant differences among accessions could happen based on the total dry weight, STI, AG, and NAG. Finally, we noticed that the salinity at 12 dSm(-1) led to the maximum increase in the quantities of AG, NAG, and DDAG. In other words, under salinity stress, the tolerant accessions were capable of accumulating the higher amounts of proline, AG, and NAG than the sensitive accessions.
In this study, we characterized, identified, and determined the effect of salt-tolerant PGPR isolated from coastal saline areas on rice growth and yield. A total of 44 bacterial strains were isolated, and 5 were found to be tolerant at high salt concentration. These isolates were further characterized for salinity tolerance and beneficial traits through a series of quantitative tests. Biochemical characterization showed that bacterial survivability decreases gradually with the increase of salt concentration. One of the strains, UPMRB9, produced the highest amount of exopolysaccharides when exposed to 1.5M of NaCl. Moreover, UPMRB9 absorbed the highest amount of sodium from the 1.5M of NaCl-amended media. The highest floc yield and biofilm were produced by UPMRE6 and UPMRB9 respectively, at 1M of NaCl concentration. The SEM observation confirmed the EPS production of UPMRB9 and UPMRE6 at 1.5M of NaCl concentration. These two isolates were identified as Bacillus tequilensis and Bacillus aryabhattai based on the 16S rRNA gene sequence. The functional group characterization of EPS showed the presence of hydroxyl, carboxyl, and amino groups. This corresponded to the presence of carbohydrates and proteins in the EPS and glucose was identified as the major type of carbohydrate. The functional groups of EPS can help to bind and chelate Na+ in the soil and thereby reduces the plant's exposure to the ion under saline conditions. The plant inoculation study revealed significant beneficial effects of bacterial inoculation on photosynthesis, transpiration, and stomatal conductance of the plant which leads to a higher yield. The Bacillus tequilensis and Bacillus aryabhattai strains showed good potential as PGPR for salinity mitigation practice for coastal rice cultivation.
The small genome size of rice relative to wheat and barley, together with its salt sensitivity, make it an ideal candidate for studies of salt stress response. Transcriptomics has emerged as a powerful technique to study salinity responses in many crop species. By identifying a large number of differentially expressed genes (DEGs) simultaneously after the stress induction, it can provide crucial insight into the immediate responses towards the stressor. In this study, a Malaysian salt-tolerant indigenous rice variety named Bajong and one commercial rice variety named MR219 were investigated for their performance in plant growth and ion accumulation properties after salt stress treatment. Bajong was further investigated for the changes in leaf's transcriptome after 6 h of stress treatment using 100 mM NaCl. Based on the results obtained, Bajong is found to be significantly more salt tolerant than MR219, showing better growth and a lower sodium ion accumulation after the stress treatment. Additionally, Bajong was analysed by transcriptomic sequencing, generating a total of 130 millions reads. The reads were assembled into de novo transcriptome and each transcript was annotated using several pre-existing databases. The transcriptomes of control and salt-stressed samples were then compared, leading to the discovery of 4096 DEGs. Based on the functional annotation results obtained, the enrichment factor of each functional group in DEGs was calculated in relation to the total reads obtained. It was found that the group with the highest gene modulation was involved in the secondary metabolite biosynthesis of plants, with approximately 2.5% increase in relation to the total reads obtained. This suggests an extensive transcriptional reprogramming of the secondary metabolic pathways after stress induction, which could be directly responsible for the salt tolerance capability of Bajong.
Effects of NaCl salinity and cadmium on the anti-oxidative activity of enzymes like superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR) and lipid peroxidation contents; malondialdehyde (MDA) were studied in two maize hybrids of different salt tolerance characteristics. An increase in the amount of lipid peroxidation indicated the oxidative stress induced by NaCl and Cd. The results also depicted that NaCl stress caused an increase in the activities of POD, SOD, CAT, APX and GR while cadmium stress increased the activities of POD, SOD and APX but showed no significant effect on CAT and GR in both the studied hybrids. The combined effect of salinity and cadmium on these parameters was higher than that of sole effect of either NaCl or Cd. It was also found that maize hybrid 26204 had better tolerance against both stresses with strong antioxidant system as compared to that of maize hybrid 8441. A comparison of the antioxidants and lipid peroxidation in two maize hybrids having varying level of NaCl and Cd stress tolerance corroborated the importance of reactive oxygen species (ROS) in defense against abiotic stresses.
Amphidiploid species in the Brassicaceae family, such as Brassica napus, are more tolerant to environmental stress than their diploid ancestors.A relatively salt tolerant B. napus line, N119, identified in our previous study, was used. N119 maintained lower Na(+) content, and Na(+)/K(+) and Na(+)/Ca(2+) ratios in the leaves than a susceptible line. The transcriptome profiles of both the leaves and the roots 1 h and 12 h after stress were investigated. De novo assembly of individual transcriptome followed by sequence clustering yielded 161,537 nonredundant sequences. A total of 14,719 transcripts were differentially expressed in either organs at either time points. GO and KO enrichment analyses indicated that the same 49 GO terms and seven KO terms were, respectively, overrepresented in upregulated transcripts in both organs at 1 h after stress. Certain overrepresented GO term of genes upregulated at 1 h after stress in the leaves became overrepresented in genes downregulated at 12 h. A total of 582 transcription factors and 438 transporter genes were differentially regulated in both organs in response to salt shock. The transcriptome depicting gene network in the leaves and the roots regulated by salt shock provides valuable information on salt resistance genes for future application to crop improvement.
Association analysis was conducted in a core collection of 94 genotypes of Solanum pimpinellifolium to identify variations linked to salt tolerance traits (physiological and yield traits under salt stress) in four candidate genes viz., DREB1A, VP1.1, NHX1, and TIP. The candidate gene analysis covered a concatenated length of 4594 bp per individual and identified five SNP/Indels in DREB1A and VP1.1 genes explaining 17.0% to 25.8% phenotypic variation for various salt tolerance traits. Out of these five alleles, one at 297 bp in DREB1A had in-frame deletion of 6 bp (CTGCAT) or 12 bp (CTGCATCTGCAT), resulting in two alleles, viz., SpDREB1A_297_6 and SpDREB1A_297_12. These alleles individually or as haplotypes accounted for maximum phenotypic variance of about 25% for various salt tolerance traits. Design of markers for selection of the favorable alleles/haplotypes will hasten marker-assisted introgression of salt tolerance from S. pimpinellifolium into cultivated tomato.
Vibrio parahaemolyticus has long been known pathogenic to shrimp but only recently it is also reported pathogenic to tropical cultured marine finfish. Traditionally, bacterial diseases in aquaculture are often treated using synthetic antibiotics but concern due to side effects of these chemicals is elevating hence, new control strategies which are both environmental and consumer friendly, are urgently needed. One promising control strategy is the bacteriophage therapy. In this study, we report the isolation and characterization of a novel vibriophage (VpKK5), belonging to the family Siphoviridae that was specific and capable of complete lysing the fish pathogenic strain of V. parahaemolyticus. The VpKK5 exhibited short eclipse and latent periods of 24 and 36 min, respectively, but with a large burst size of 180 pfu/cell. The genome analysis revealed that the VpKK5 is a novel bacteriophage with the estimated genome size of 56,637 bp and has 53.1% G + C content. The vibriophage has about 80 predicted open reading frames consisted of 37 complete coding sequences which did not match to any protein databases. The analysis also found no lysogeny and virulence genes in the genome of VpKK5. With such genome features, we suspected the vibriophage is novel and could be explored for phage therapy against fish pathogenic strains of V. parahaemolyticus in the near future.
A halo-thermophilic bacterium, Roseithermus sacchariphilus strain RA (previously known as Rhodothermaceae bacterium RA), was isolated from a hot spring in Langkawi, Malaysia. A complete genome analysis showed that the bacterium harbors 57 glycoside hydrolases (GHs), including a multi-domain xylanase (XynRA2). The full-length XynRA2 of 813 amino acids comprises a family 4_9 carbohydrate-binding module (CBM4_9), a family 10 glycoside hydrolase catalytic domain (GH10), and a C-terminal domain (CTD) for type IX secretion system (T9SS). This study aims to describe the biochemical properties of XynRA2 and the effects of CBM truncation on this xylanase. XynRA2 and its CBM-truncated variant (XynRA2ΔCBM) was expressed, purified, and characterized. The purified XynRA2 and XynRA2ΔCBM had an identical optimum temperature at 70 °C, but different optimum pHs of 8.5 and 6.0 respectively. Furthermore, XynRA2 retained 94% and 71% of activity at 4.0 M and 5.0 M NaCl respectively, whereas XynRA2ΔCBM showed a lower activity (79% and 54%). XynRA2 exhibited a turnover rate (kcat) of 24.8 s-1, but this was reduced by 40% for XynRA2ΔCBM. Both the xylanases hydrolyzed beechwood xylan predominantly into xylobiose, and oat-spelt xylan into a mixture of xylo-oligosaccharides (XOs). Collectively, this work suggested CBM4_9 of XynRA2 has a role in enzyme performance.
Salinity threat is estimated to reduce global rice production by 50%. Comprehensive analysis of the physiological and metabolite changes in rice plants from salinity stress (i.e. tolerant versus susceptible plants) is important to combat higher salinity conditions. In this study, we screened a total of 92 genotypes and selected the most salinity tolerant line (SS1-14) and most susceptible line (SS2-18) to conduct comparative physiological and metabolome inspections. We demonstrated that the tolerant line managed to maintain their water and chlorophyll content with lower incidence of sodium ion accumulation. We also examined the antioxidant activities of these lines: production of ascorbate peroxidase (APX) and catalase (CAT) were significantly higher in the sensitive line while superoxide dismutase (SOD) was higher in the tolerant line. Partial least squares discriminant analysis (PLS-DA) score plots show significantly different response for both lines after the exposure to salinity stress. In the tolerant line, there was an upregulation of non-polar metabolites and production of sucrose, GABA and acetic acid, suggesting an important role in salinity adaptation. In contrast, glutamine and putrescine were noticeably high in the susceptible rice. Coordination of different strategies in tolerant and susceptible lines show that they responded differently after exposure to salt stress. These findings can assist crop development in terms of developing tolerance mechanisms for rice crops.
Climate change is causing soil salinization, resulting in huge crop losses throughout the world. Multiple physiological and biochemical pathways determine the ability of plants to tolerate salt stress. Chili (Capsicum annum L.) is a salt-susceptible crop; therefore, its growth and yield is negatively impacted by salinity. Irreversible damage at cell level and photo inhibition due to high production of reactive oxygen species (ROS) and less CO2 availability caused by water stress is directly linked with salinity. A pot experiment was conducted to determine the impact of five NaCl salinity levels, i.e., 0,1.5, 3.0, 5.0 and 7.0 dS m-1 on growth, biochemical attributes and yield of two chili genotypes ('Plahi' and 'A-120'). Salinity stress significantly reduced fresh and dry weight, relative water contents, water use efficiency, leaf osmotic potential, glycine betaine (GB) contents, photosynthetic rate (A), transpiration rate (E), stomatal conductance (Ci), and chlorophyll contents of tested genotypes. Salinity stress significantly enhanced malondialdehyde (MDA) contents and activities of the enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD). In addition, increasing salinity levels significantly reduced the tissue phosphorus and potassium concentrations, while enhanced the tissue sodium and chloride concentrations. Genotype 'Plahi' had better growth and biochemical attributes compared to 'A-120'. Therefore, 'Plahi' is recommended for saline areas to improve chili production.
Monodehydroascorbate reductase (MDHAR), an important enzyme of the ascorbate-glutathione cycle, is involved in salt tolerance of plants through scavenging of reactive oxygen species (ROS). In this study, a cDNA encoding MDHAR from the mangrove plant Acanthus ebracteatus was introduced into rice to examine its role in salt tolerance. Three stable transgenic lines (MT22, MT24 and MT25) overexpressing AeMDHAR were selected in vitro using hygromycin and confirmed by PCR, quantitative reverse-transcription (qRT) PCR and enzyme assay. The transgenic line MT24 was predicted to possess a single copy of the transgene while the other two transgenic lines were predicted to have multiple transgene integrations. The AeMDHAR transcripts were detected only in transgenic rice lines but not in untransformed rice. The abundance of AeMDHAR transcripts in transgenic lines MT22 and MT25 was approximately 2.75 times the amount found in MT24. The transgenic rice lines overexpressing AeMDHAR showed a significant increase in MDHAR enzyme activity compared to untransformed plants under both NaCl and control conditions. All transgenic lines showed better yield attributes such as a higher tiller number and increased 1000-grain weight compared to non-transgenics. They also showed tolerance to salt at germination and seedling stages. The transgenic line MT24, which harbors a single copy of AeMDHAR, displayed a lower rate of sterility, a higher number of tillers and longer panicle compared to untransformed plants when subjected to salt stress.
Magnocellular neurons (MCNs) in the hypothalamo-neurohypophysial system (HNS) are highly specialized to release large amounts of arginine vasopressin (Avp) or oxytocin (Oxt) into the blood stream and play critical roles in the regulation of body fluid homeostasis. The MCNs are osmosensory neurons and are excited by exposure to hypertonic solutions and inhibited by hypotonic solutions. The MCNs respond to systemic hypertonic and hypotonic stimulation with large changes in the expression of their Avp and Oxt genes, and microarray studies have shown that these osmotic perturbations also cause large changes in global gene expression in the HNS. In this paper, we examine gene expression in the rat supraoptic nucleus (SON) under normosmotic and chronic salt-loading SL) conditions by the first time using "new-generation", RNA sequencing (RNA-Seq) methods. We reliably detect 9,709 genes as present in the SON by RNA-Seq, and 552 of these genes were changed in expression as a result of chronic SL. These genes reflect diverse functions, and 42 of these are involved in either transcriptional or translational processes. In addition, we compare the SON transcriptomes resolved by RNA-Seq methods with the SON transcriptomes determined by Affymetrix microarray methods in rats under the same osmotic conditions, and find that there are 6,466 genes present in the SON that are represented in both data sets, although 1,040 of the expressed genes were found only in the microarray data, and 2,762 of the expressed genes are selectively found in the RNA-Seq data and not the microarray data. These data provide the research community a comprehensive view of the transcriptome in the SON under normosmotic conditions and the changes in specific gene expression evoked by salt loading.
An approach was made to enhance the halophilic lipase secretion by a newly isolated moderate halophilic Marinobacter litoralis SW-45, through the statistical optimization of Plackett-Burman (PB) experimental design and the Face Centered Central Composite Design (FCCCD). Initially, PB statistical design was used to screen the medium components and process parameters, while the One-factor-at-a-time technique was availed to find the optimum level of significant parameters. It was found that MgSO4 · 7H2 O, NaCl, agitation speed, FeSO4 · 7H2 O, yeast extract and KCl positively influence the halophilic lipase production, whereas temperature, carbon source (maltose), inducer (olive oil), inoculum size, and casein-peptone had a negative effect on enzyme production. The optimum level of halophilic lipase production was obtained at 3.0 g L-1 maltose, 1% (v/v) olive oil, 30 °C growth temperature and 4% inoculum volume (v/v). Further optimization by FCCCD was revealed 1.7 folds improvement in the halophilic lipase production from 0.603 U ml-1 to 1.0307 U ml-1 . Functional and biochemical characterizations displayed that the lipase was significantly active and stable in the pH ranges of 7.0-9.5, temperature (30-50 °C), and NaCl concentration (0-21%). The lipase was maximally active at pH 8.0, 12% (w/v) NaCl, and 50 °C temperature. Besides, M. litoralis SW-45 lipase was found to possess the promising industrial potential to be utilized as a biocatalyst for the esterification.
This study was undertaken to determine the effects of varied salinity regimes on the morphological traits (plant height, number of leaves, number of flowers, fresh and dry weight) and major mineral composition of 13 selected purslane accessions. Most of the morphological traits measured were reduced at varied salinity levels (0.0, 8, 16, 24 and 32 dS m(-1)), but plant height was found to increase in Ac1 at 16 dS m(-1) salinity, and Ac13 was the most affected accession. The highest reductions in the number of leaves and number of flowers were recorded in Ac13 at 32 dS m(-1) salinity compared to the control. The highest fresh and dry weight reductions were noted in Ac8 and Ac6, respectively, at 32 dS m(-1) salinity, whereas the highest increase in both fresh and dry weight was recorded in Ac9 at 24 dS m(-1) salinity compared to the control. In contrast, at lower salinity levels, all of the measured mineral levels were found to increase and later decrease with increasing salinity, but the performance of different accessions was different depending on the salinity level. A dendrogram was also constructed by UPGMA based on the morphological traits and mineral compositions, in which the 13 accessions were grouped into 5 clusters, indicating greater diversity among them. A three-dimensional principal component analysis also confirmed the output of grouping from cluster analysis.
Soil salinity exert negative impacts on agricultural production and regarded as a crucial issue in global wetland rice production (Oryza sativa L.). Indigenous salt-tolerant plant growth-promoting rhizobacteria (Bacillus sp.) could be used for improving rice productivity under salinity stress. This study screened potential salt-tolerant plant growth-promoting rhizobacteria (PGPR) collected from coastal salt-affected rice cultivation areas under laboratory and glasshouse conditions. Furthermore, the impacts of these PGPRs were tested on biochemical attributes and nutrient contents in various rice varieties under salt stress. The two most promising PGPR strains, i.e., 'UPMRB9' (Bacillus tequilensis 10b) and 'UPMRE6' (Bacillus aryabhattai B8W22) were selected for glasshouse trial. Results indicated that 'UPMRB9' improved osmoprotectant properties, i.e., proline and total soluble sugar (TSS), antioxidant enzymes like superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT). Moreover, 'UPMRB9' inoculated rice plants accumulated higher amount of nitrogen and calcium in tissues. Therefore, the indigenous salt-tolerant PGPR strain 'UPMRB9' could be used as a potential bio-augmentor for improving biochemical attributes and nutrient uptake in rice plants under salinity stress. This study could serve as a preliminary basis for future large-scale trials under glasshouse and field conditions.