Displaying publications 1 - 20 of 27 in total

Abstract:
Sort:
  1. E Silva FA, Pereira JFB, Kurnia KA, Ventura SPM, Silva AMS, Rogers RD, et al.
    Chem Commun (Camb), 2017 Apr 27.
    PMID: 28447082 DOI: 10.1039/c7cc02294h
    Herein we propose an alternative way to distinguish ionic liquids from Coulombic-dominated salts, based not on their upper limit melting temperature (100 °C), but on the trend of their phase-forming abilities to create aqueous biphasic systems as a function of temperature, in which a wider plethora of interactions can be appraised.
    Matched MeSH terms: S Phase
  2. Maha A, Cheong SK, Leong CF, Seow HF
    Objective: Despite much progress in treatment strategies, long term survival of adult ALL is still inferior to that in children. The underlying mechanisms for these differences are largely unknown. Intensification of contemporary therapy has also resulted in many children being over-treated. The action of chemotherapeutic drugs used in the treatment of ALL includes cell cycle dependent agents which are effective on cells that are proliferating. Cell proliferation in haemopoietic cells is controlled by cytokines. Thus, we proposed to study the cell cycle profile of ALL cases and also expression of cytokines to determine their role in affecting treatment outcome in the different age groups.
    Methods: We determined the S-phase fraction from the cell cycle profile by flowcytometry and tested the expressions of cytokine IL-1beta, IL-6, IL-18, IFN-gamma, TNF-alpha and GM-CSF using RT-PCR in de novo ALL cases.
    Results: We found a significantly higher S-phase fraction in samples from children 2-10 years old compared to the older age group (>10 years old) (p=0.001). GM-CSF was found to be expressed in a significantly lower percentage of children compared to adults (p=0.008).
    Conclusion: Our results implied that GM-CSF may have induced cell cycle arrests in adult ALL resulting in a lower percentage of S-phase fraction. This may contribute to the poorer prognosis in adult ALL because non-cycling blasts are less sensitive to some chemotherapeutic drugs.
    Keywords: ALL, S-phase fraction, GM-CSF, age
    Matched MeSH terms: S Phase
  3. Teo GY, Rasedee A, Al-Haj NA, Beh CY, How CW, Rahman HS, et al.
    Saudi J Biol Sci, 2020 Feb;27(2):653-658.
    PMID: 32210684 DOI: 10.1016/j.sjbs.2019.11.032
    Erythropoietin receptors (EPORs) are present not only in erythrocyte precursors but also in non-hematopoietic cells including cancer cells. In this study, we determined the effect of fetal bovine serum (FBS) in culture medium on the EPOR expression and viability of the estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 breast cancer cells. Using flow cytometry, we showed that the inclusion of 10% FBS in the medium increased the EPOR expressions and viabilities of MDA-MB-231 and MCF-7 cells. The MDA-MB-231 showed greater EPOR expression than MCF-7 cells, suggesting that the presence of ERs on cells is associated with poor expression of EPOR. Culture medium containing 10% FBS also caused increased number of breast cancer cells entering the synthesis phase of the cell cycle. The study also showed that rHuEPO treatment did not affect viability of breast cancer cells. In conclusion, it was shown that the inclusion of FBS in culture medium increased expression of EPOR in breast cancer cells and rHuEPO treatment had no effect on the proliferation of these cancer cells.
    Matched MeSH terms: S Phase
  4. Shahhiran MAA, Abdul Kadir MF, Nor Rashid N, Abdul-Rahman PS, Othman S
    Histochem Cell Biol, 2024 Nov 18;163(1):3.
    PMID: 39557682 DOI: 10.1007/s00418-024-02339-0
    Dihydroorotate dehydrogenase (DHODH) inhibitors have recently gained increasing research interest owing to their potential for treating breast cancers. We explored their effects in different breast cancer subtypes, focusing on mitochondrial dysfunction. The sensitivity of different subtypes to the inhibitors was investigated with respect to DHODH expression, tumorigenic, and receptor status. Analysis of respiratory complexes, cell cycle, reactive oxygen species (ROS), and cell differentiation were performed. Four cell lines with different receptor status were included, namely MCF-7, MDAMB-231, SKBR-3, and MCF-10A. We showed that MCF-7 and MDAMB-231 cells of the subtypes (ER+/PR+/HER2-) and (ER-/PR-/HER2-), respectively, were responsive to brequinar. Brequinar (BQR) caused cell cycle arrest in the S-phase in sensitive subtypes of breast cells but induced cell differentiation only in poorly differentiated breast cells. All cell subtypes showed increased generation of ROS, both intracellular and mitochondrial ROS with a greater increase seen in mitochondrial ROS in response to DHODH inhibitor, subsequently contributing to mitochondrial dysfunction. BQR also disrupts the function of complex III in ER+/PR+ and triple negative breast cancer (TNBC) subtypes. Collectively, we have found that MDAMB-231 TNBC cell was the most affected by DHODH inhibition in terms of sensitivity, cell cycle arrest, induction of cell differentiation, production of ROS, and mitochondrial complexes disruption. In conclusion, these findings suggest that DHODH inhibitors can potentially become a valuable targeted therapy for TNBC subtype and further consolidates its therapeutic potential as part of the combinatorial therapy against this resilient breast cancer subtype.
    Matched MeSH terms: S Phase Cell Cycle Checkpoints/drug effects
  5. Baharuddin AA, Roosli RAJ, Zakaria ZA, Md Tohid SF
    Pharm Biol, 2018 Dec;56(1):422-432.
    PMID: 30301390 DOI: 10.1080/13880209.2018.1495748
    CONTEXT: Dicranopteris linearis (Burm.f.) Underw. (Gleicheniaceae) has been scientifically proven to exert various pharmacological activities. Nevertheless, its anti-proliferative potential has not been extensively investigated.

    OBJECTIVE: To investigate the anti-proliferative potential of D. linearis leaves and determine possible mechanistic pathways.

    MATERIALS AND METHODS: MTT assay was used to determine the cytotoxic effects of D. linearis methanol (MEDL) and petroleum ether (PEEDL) extracts at concentrations of 100, 50, 25, 12.5, 6.25 and 3.125 µg/mL against a panel of cancer cell lines (breast [MCF-7 and MDA-MB-231], cervical [HeLa], colon [HT-29], hepatocellular [HepG2] and lung [A549]), as compared to negative (untreated) and positive [5-fluorouracil (5-FU)-treated] control groups. Mouse fibroblast cells (3T3) were used as normal cells. The mode of cell death was examined using morphological analysis via acridine orange (AO) and propidium iodide (PI) double staining. Cell cycle arrest was determined using flow cytometer, followed by annexin V-PI apoptosis detection kit.

    RESULTS: MEDL demonstrated the most significant growth inhibition against MDA-MB-231 cells (IC50 22.4 µg/mL). PEEDL showed no cytotoxic effect. Induction of apoptosis by MEDL was evidenced via morphological analysis and acridine orange propidium iodide staining. MEDL could induce S phase cell cycle arrest after 72 h of incubation. Early apoptosis induction in MDA-MB-231 cells was confirmed by annexin V-FITC and PI staining. Significant increase in apoptotic cells were detected after 24 h of treatment with 15.07% cells underwent apoptosis, and the amount escalated to 18.24% with prolonged 48 h incubation.

    CONCLUSIONS: MEDL has potential as a potent cytotoxic agent against MDA-MB-231 adenocarcinoma.

    Matched MeSH terms: S Phase Cell Cycle Checkpoints/drug effects*; S Phase Cell Cycle Checkpoints/physiology
  6. Li LK, Rola AS, Kaid FA, Ali AM, Alabsi AM
    Arch Oral Biol, 2016 Apr;64:28-38.
    PMID: 26752226 DOI: 10.1016/j.archoralbio.2015.12.002
    Goniothalamin is a natural occurring styryl-lactone compound isolated from Goniothalamus macrophyllus. It had been demonstrated to process promising anticancer activity on various cancer cell lines. However, little study has been carried out on oral cancer. The aim of this study was to determine the cytotoxic effects of goniothalamin against H400 oral cancer cells and its underlying molecular pathways. Results from MTT assay demonstrated that goniothalamin exhibited selective cytotoxicity as well as inhibited cells growth of H400 in dose and time-dependent manner. This was achieved primarily via apoptosis where apoptotic bodies and membrane blebbing were observed using AO/PI and DAPI/Annexin V-FITC fluorescence double staining. In order to understand the apoptosis mechanisms induced by goniothalamin, apoptosis assessment based on mitochondrial membrane potential assay and cytochrome c enzyme-linked immunosorbent assay were carried out. Results demonstrated that the depolarization of mitochondrial transmembrane potential facilitated the release of mitochondrial cytochrome c into cytosol. Caspases assays revealed the activation of initiator caspase-9 and executioner caspase-3/7 in dose-dependent manners. This form of apoptosis was closely associated with the regulation on Bcl-2 family proteins, cell cycle arrest at S phase and inhibition of NF-κβ translocation from cytoplasm to nucleus. Conclusion, goniothalamin has the potential to act as an anticancer agent against human oral squamous cell carcinoma (H400 cells).
    Matched MeSH terms: S Phase
  7. Teoh PL, Liau M, Cheong BE
    Nutr Cancer, 2019;71(4):668-675.
    PMID: 30663402 DOI: 10.1080/01635581.2018.1559942
    Phyla nodiflora L. has been used as medicinal remedies for various ailments due to its antioxidant, anti-inflammatory, anti-bacterial, anti-tumor activity. Previously, we found that the plant extracts induced DNA fragmentation in MCF-7. This study was to investigate the modes of action of P. nodiflora in inhibiting breast cancer cells using leaf ethyl acetate (EA leaf), stem ethyl acetate (EA stem) and stem methanol (Met stem) extracts. The MTT assay showed that the anti-proliferative effects of P. nodiflora extracts were selective towards MCF-7 with a minimal effect on MCF10A. Morphological changes such as cell shrinkage and nuclear condensation were observed in treated cells. We found that induction of apoptosis by EA leaf and EA stem was mitochondrial-dependent while loss of mitochondrial membrane potential was not found in Met stem-treated cells. In addition, the expression levels of AIFM1, CASP9, CFLAR, and IGF1R were altered after treatment. Decreased BCL-2 expression was found in treated cells while BAX and caspases' expression was upregulated or maintained. All extracts caused perturbation of cell cycle at S phase by dysregulating the expression of cell cycle regulators such as CDKs and cyclins. Our findings indicate that P. nodiflora inhibits MCF-7 cells by inducing apoptosis and perturbing cell cycle.
    Matched MeSH terms: S Phase
  8. Ali A, Sundaraj K, Badlishah Ahmad R, Ahamed NU, Islam A, Sundaraj S
    J Hum Kinet, 2015 Jun 27;46:69-76.
    PMID: 26240650 DOI: 10.1515/hukin-2015-0035
    The objective of the present study was to investigate the time to fatigue and compare the fatiguing condition among the three heads of the triceps brachii muscle using surface electromyography during an isometric contraction of a controlled forceful hand grip task with full elbow extension. Eighteen healthy subjects concurrently performed a single 90 s isometric contraction of a controlled forceful hand grip task and full elbow extension. Surface electromyographic signals from the lateral, long and medial heads of the triceps brachii muscle were recorded during the task for each subject. The changes in muscle activity among the three heads of triceps brachii were measured by the root mean square values for every 5 s period throughout the total contraction period. The root mean square values were then analysed to determine the fatiguing condition for the heads of triceps brachii muscle. Muscle fatigue in the long, lateral, and medial heads of the triceps brachii started at 40 s, 50 s, and 65 s during the prolonged contraction, respectively. The highest fatiguing rate was observed in the long head (slope = -2.863), followed by the medial head (slope = -2.412) and the lateral head (slope = -1.877) of the triceps brachii muscle. The results of the present study concurs with previous findings that the three heads of the triceps brachii muscle do not work as a single unit, and the fiber type/composition is different among the three heads.
    Matched MeSH terms: S Phase
  9. Saberbaghi T, Abbasian F, Mohd Yusof YA, Makpol S
    PMID: 23573154 DOI: 10.1155/2013/780504
    In this study, the effects of Chlorella vulgaris (CV) on replicative senescence of human diploid fibroblasts (HDFs) were investigated. Hot water extract of CV was used to treat HDFs at passages 6, 15, and 30 which represent young, presenescence, and senescence ages, respectively. The level of DNA damage was determined by comet assay while apoptosis and cell cycle profile were determined using FACSCalibur flow cytometer. Our results showed direct correlation between increased levels of damaged DNA and apoptosis with senescence in untreated HDFs (P < 0.05). Cell cycle profile showed increased population of untreated senescent cells that enter G0/G1 phase while the cell population in S phase decreased significantly (P < 0.05). Treatment with CV however caused a significant reduction in the level of damaged DNA and apoptosis in all age groups of HDFs (P < 0.05). Cell cycle analysis showed that treatment with CV increased significantly the percentage of senescent HDFs in S phase and G2/M phases but decreased the population of cells in G0/G1 phase (P < 0.05). In conclusion, hot water extract of Chlorella vulgaris effectively decreased the biomarkers of ageing, indicating its potential as an antiageing compound.
    Matched MeSH terms: S Phase
  10. Chong SL, Mou DG, Ali AM, Lim SH, Tey BT
    Hybridoma (Larchmt), 2008 Apr;27(2):107-11.
    PMID: 18642675
    The effect of mild hypothermic (32 degrees C) conditions on cell growth, cell-cycle progress, and antibody production of hybridoma C2E7 cells was investigated in the present study. The growth of hybridoma cells was slower during the mild hypothermic condition compared to that at 37 degrees C; this led to about 10% decrease in maximum viable cell density and volumetric antibody productivity. However, under mild hypothermic growth conditions, the culture viability was substantially improved and the specific antibody productivity was enhanced compared to that at 37 degrees C. The average specific productivity for the entire batch culture at 32 degrees C is about 5% higher than that at 37 degrees C. Cell-cycle analysis data showed that there was no growth arrestment during the mild hypothermic growth of hybridoma cells. The G1-phase cells were increased, while the S-phase cells were decreased gradually as the culture time progressed. Further analysis showed that the specific antibody productivity of hybridoma cells was correlated to the fraction of S-phase cells.
    Matched MeSH terms: S Phase/immunology
  11. Alabsi AM, Ali R, Ali AM, Harun H, Al-Dubai SA, Ganasegeran K, et al.
    Asian Pac J Cancer Prev, 2013;14(11):6273-80.
    PMID: 24377517
    Goniothalamin, a natural compound extracted from Goniothalamus sp. belonging to the Annonacae family, possesses anticancer properties towards several tumor cell lines. This study focused on apoptosis induction by goniothalamin (GTN) in the Hela cervical cancer cell line. Cell growth inhibition was measured by MTT assay and the IC50 value of goniothalamin was 3.2 ± 0.72 μg/ml. Morphological changes and biochemical processes associated with apoptosis were evident on phase contrast microscopy and fluorescence microscopy. DNA fragmentation, DNA damage, caspase-9 activation and a large increase in the sub-G1 and S cell cycle phases confirmed the occurrence of apoptosis in a time-dependent manner. It could be concluded that goniothalamin show a promising cytotoxicity effect against cervical cancer cells (Hela) and the cell death mode induced by goniothalamin was apoptosis.
    Matched MeSH terms: S Phase/drug effects
  12. Komarasamy TV, Sekaran SD
    J Oleo Sci, 2012;61(4):227-39.
    PMID: 22450124
    Melanoma incidence and mortality have risen dramatically in recent years. No effective treatment for metastatic melanoma exists; hence currently, an intense effort for new drug evaluation is being carried out. In this study, we investigated the effects of a palm oil-derived nanopolymer called Bio-12 against human malignant melanoma. The nanopolymers of Bio-12 are lipid esters derived from a range of fatty acids of palm oil. Our study aims to identify the anti-proliferative properties of Bio-12 against human malignant melanoma cell line (MeWo) and to elucidate the mode of actions whereby Bio-12 brings about cell death. Bio-12 significantly inhibited the growth of MeWo cells in a concentration- and time- dependent manner with a median inhibitory concentration (IC₅₀) value of 1/25 dilution after 72 h but was ineffective on human normal skin fibroblasts (CCD-1059sk). We further investigated the mode of actions of Bio-12 on MeWo cells. Cell cycle flow cytometry demonstrated that MeWo cells treated with increasing concentrations of Bio-12 resulted in S-phase arrest, accompanied by the detection of sub-G1 content, indicative of apoptotic cell death. Induction of apoptosis was further confirmed via caspase (substrate) cleavage assay which showed induction of early apoptosis in MeWo cells. In addition, DNA strand breaks which are terminal event in apoptosis were evident through increase of TUNEL positive cells and formation of a characteristic DNA ladder on agarose gel electrophoresis. Moreover, treatment of MeWo cells with Bio-12 induced significant increase in lactate dehydrogenase (LDH) activity. These results show that Bio-12 possesses the ability to suppress proliferation of human malignant melanoma MeWo cells and this suppression is at least partly attributed to the initiation of the S-phase arrest, apoptosis and necrosis, suggesting that it is indeed worth for further investigations.
    Matched MeSH terms: S Phase/drug effects
  13. Alabsi AM, Ali R, Ali AM, Al-Dubai SA, Harun H, Abu Kasim NH, et al.
    Asian Pac J Cancer Prev, 2012;13(10):5131-6.
    PMID: 23244123
    Cancer is one of the major health problems worldwide and its current treatments have a number of undesired adverse side effects. Natural compounds may reduce these. Currently, a few plant products are being used to treat cancer. In this study, goniothalamin, a natural occurring styryl-lactone extracted from Goniothalamus macrophyllus, was investigated for cytotoxic properties against cervical cancer (HeLa), breast carcinoma (MCF-7) and colon cancer (HT29) cells as well as normal mouse fibroblast (3T3) using MTT assay. Fluorescence microscopy showed that GTN is able to induce apoptosis in HeLa cells in a time dependent manner. Flow cytometry further revealed HeLa cells treated with GTN to be arrested in the S phase. Phosphatidyl serine properties present during apoptosis enable early detection of the apoptosis in the cells. Using annexin V/PI double staining it could be shown that GTN induces early apoptosis on HeLa cells after 24, 48 and 72 h. It could be concluded that goniothalamin showing a promising cytotoxicity effect against several cancer cell lines including cervical cancer cells (HeLa) with apoptosis as the mode of cell death induced on HeLa cells by Goniothalamin was.
    Matched MeSH terms: S Phase/drug effects*
  14. Vui HC, Lim WC, Law HL, Norwani B, Charles VU
    Med J Malaysia, 2013 Oct;68(5):389-92.
    PMID: 24632867
    INTRODUCTION: Percutaneous endoscopic gastrostomy (PEG) placement in patients with ventriculo-peritoneal shunt (VPS) may be associated with complications. This study reports our experience of PEG in patients with VPS.

    MATERIALS AND METHODS: Consecutive patients undergoing PEG insertion in a gastroenterology unit over 18 month's period were retrospectively analyzed. All patients were evaluated by an attending gastroenterologist for fitness for procedure. Instructions were given for routine antibiotic prophylaxes before the procedure and continued for 48 hours. Patients were followed for immediate complications in particular, wound infection, signs of meningitis, deterioration in neurological state and shunt malfunction. Post discharge, patients were given routine follow-up for review.

    RESULTS: Of 86 patients who had PEG inserted during the study period, 14 had VPS including 2 of which had VPS after PEG. The main common indications for VPS were intracerebral bleed and head trauma and for PEG were requirement of long term enteral feeding. Twelve patients had PEG at a mean interval of 61 days (range 1-187 days) after VPS. Of these, eight received prophylactic antibiotic or were on antibiotic for other indications before PEG. Two patients developed mild PEG site infections within a week of insertions, including one patient who was not given antibiotic prophylaxis, both treated successfully with antibiotics. The latter patient developed worsening hydrocephalus secondary to VPS blockage. At a mean follow-up period was 140 days (range 20-570 days), there were no death or further complications encountered.

    CONCLUSIONS: Although safe in the majority of patients with VPS, PEG infection can lead to intracranial complications. We recommend antibiotic prophylaxis for VPS patients before PEG.
    Matched MeSH terms: S Phase
  15. Harun SN, Ahmad H, Lim HN, Chia SL, Gill MR
    Pharmaceutics, 2021 Jan 24;13(2).
    PMID: 33498795 DOI: 10.3390/pharmaceutics13020150
    The ruthenium polypyridyl complex [Ru(dppz)2PIP]2+ (dppz: dipyridophenazine, PIP: (2-(phenyl)-imidazo[4,5-f ][1,10]phenanthroline), or Ru-PIP, is a potential anticancer drug that acts by inhibiting DNA replication. Due to the poor dissolution of Ru-PIP in aqueous media, a drug delivery agent would be a useful approach to overcome its limited bioavailability. Mesoporous silica nanoparticles (MSNs) were synthesized via a co-condensation method by using a phenanthrolinium salt with a 16 carbon length chain (Phen-C16) as the template. Optimization of the synthesis conditions by Box-Behnken design (BBD) generated MSNs with high surface area response at 833.9 m2g-1. Ru-PIP was effectively entrapped in MSNs at 18.84%. Drug release profile analysis showed that Ru-PIP is gradually released, with a cumulative release percentage of approximately 50% at 72 h. The release kinetic profile implied that Ru-PIP was released from MSN by diffusion. The in vitro cytotoxicity of Ru-PIP, both free and MSN-encapsulated, was studied in Hela, A549, and T24 cancer cell lines. While treatment of Ru-PIP alone is moderately cytotoxic, encapsulated Ru-PIP exerted significant cytotoxicity upon all the cell lines, with half maximal inhibitory concentration (IC50) values determined by MTT (([3-(4,5-dimethylthiazol-2-yl)-2,5-dephenyltetrazolium bromide]) assay at 48 h exposure substantially decreasing from >30 µM to <10 µM as a result of MSN encapsulation. The mechanistic potential of cytotoxicity on cell cycle distribution showed an increase in G1/S phase populations in all three cell lines. The findings indicate that MSN is an ideal drug delivery agent, as it is able to sustainably release Ru-PIP by diffusion in a prolonged treatment period.
    Matched MeSH terms: S Phase
  16. Balam SK, Soora Harinath J, Krishnammagari SK, Gajjala RR, Polireddy K, Baki VB, et al.
    ACS Omega, 2021 May 04;6(17):11375-11388.
    PMID: 34056293 DOI: 10.1021/acsomega.1c00360
    A series of 3-amino-2-hydroxybenzofused 2-phosphalactones (4a-l) has been synthesized from the Kabachnik-Fields reaction via a facile route from a one-pot three-component reaction of diphenylphosphite with various 2-hydroxybenzaldehyes and heterocyclic amines in a new way of expansion. The in vitro anti-cell proliferation studies by MTT assay have revealed them as potential Panc-1, Miapaca-2, and BxPC-3 pancreatic cell growth inhibitors, and the same is supported by molecular docking, QSAR, and ADMET studies. The MTT assay of their SAHA derivatives against the same cell lines evidenced them as potential HDAC inhibitors and identified 4a, 4b, and 4k substituted with 1,3-thiazol, 1,3,4-thiadiazol, and 5-sulfanyl-1,3,4-thiadiazol moieties on phenyl and diethylamino phenyl rings as potential ones. Additionally, the flow cytometric analyses of 4a, 4b, and 4k against BxPC-3 cells revealed compound 4k as a lead compound that arrests the S phase cell cycle growth at low micromolar concentrations. The ADMET properties have ascertained their inherent pharmacokinetic potentiality, and the wholesome results prompted us to report it as the first study on anti-pancreatic cancer activity of cyclic α-aminophosphonates. Ultimately, this study serves as a good contribution to update the existing knowledge on the anticancer organophosphorus heterocyclic compounds and elevates the scope for generation of new anticancer drugs. Further, the studies like QSAR, drug properties, toxicity risks, and bioactivity scores predicted for them have ascertained the synthesized compounds as newer and potential drug candidates. Hence, this study had augmented the array of α-aminophosphonates by adding a new collection of 3-amino-2-hydroxybenzofused 2-phosphalactones, a class of cyclic α-aminophosphonates, to it, which proved them as potential anti-pancreatic cancer agents.
    Matched MeSH terms: S Phase
  17. Zainal-Abidin MH, Hayyan M, Ngoh GC, Wong WF
    ACS Omega, 2020 Jan 28;5(3):1656-1668.
    PMID: 32010840 DOI: 10.1021/acsomega.9b03709
    The application of graphene in the field of drug delivery has attracted massive interest among researchers. However, the high toxicity of graphene has been a drawback for its use in drug delivery. Therefore, to enhance the biocompatibility of graphene, a new route was developed using ternary natural deep eutectic solvents (DESs) as functionalizing agents, which have the capability to incorporate various functional groups and surface modifications. Physicochemical characterization analyses, including field emission scanning electron microscope, fourier-transform infrared spectroscopy, Raman spectroscopy, Brunauer-Emmett-Teller, X-ray diffraction, and energy dispersive X-ray, were used to verify the surface modifications introduced by the functionalization process. Doxorubicin was loaded onto the DES-functionalized graphene. The results exhibited significantly improved drug entrapment efficiency (EE) and drug loading capacity (DLC) compared with pristine graphene and oxidized graphene. Compared with unfunctionalized graphene, functionalization with DES choline chloride (ChCl):sucrose:water (4:1:4) resulted in the highest drug loading capacity (EE of 51.84% and DLC of 25.92%) followed by DES ChCl:glycerol:water (1:2:1) (EE of 51.04% and DLC of 25.52%). Following doxorubicin loading, graphene damaged human breast cancer cell line (MCF-7) through the generation of intracellular reactive oxygen species (>95%) and cell cycle disruption by increase in the cell population at S phase and G2/M phase. Thus, DESs represent promising green functionalizing agents for nanodrug carriers. To the best of our knowledge, this is the first time that DES-functionalized graphene has been used as a nanocarrier for doxorubicin, illustrating the potential application of DESs as functionalizing agents in drug delivery systems.
    Matched MeSH terms: S Phase
  18. Sandrasaigaran P, Algraittee SJR, Ahmad AR, Vidyadaran S, Ramasamy R
    Cytotechnology, 2018 Jun;70(3):1037-1050.
    PMID: 29497876 DOI: 10.1007/s10616-017-0182-4
    Mesenchymal stem cells (MSCs) exert potent immuno-regulatory activities on various immune cells and also differentiate into various mesodermal lineages besides retaining a distinct self-renewal ability. Such exclusive characteristics had enabled MSCs to be recognised as an ideal source for cell-based treatment in regenerative medicine and immunotherapy. Thus, considering MSCs for treating degenerative disease of organs with limited regenerative potential such as cartilage would serve as an ideal therapy. This study explored the feasibility of generating human cartilage-derived MSCs (hC-MSCs) from sports injured patients and characterised based on multipotent differentiation and immunosuppressive activities. Cartilage tissues harvested from a non-weight bearing region during an arthroscopy procedure were used to generate MSCs. Despite the classic morphology of fibroblast-like cells and a defined immunophenotyping, MSCs expressed early embryonic transcriptional markers (SOX2, REX1, OCT4 and NANOG) and differentiated into chondrocytes, adipocytes and osteocytes when induced accordingly. Upon co-culture with PHA-L activated T-cells, hC-MSCs suppressed the proliferation of the T-cells in a dose-dependent manner. Although, hC-MSCs did not alter the activation profile of T cells significantly, yet prevented the entering of activated T cells into S phase of the cell cycle by cell cycle arrest. The present study has strengthened the evidence of tissue-resident mesenchymal stem cells in human cartilage tissue. The endogenous MSCs could be an excellent tool in treating dysregulated immune response that associated with cartilage since hC-MSCs exerted both immunosuppressive and regenerative capabilities.
    Matched MeSH terms: S Phase
  19. Khazaei S, Abdul Hamid R, Ramachandran V, Mohd Esa N, Pandurangan AK, Danazadeh F, et al.
    PMID: 29250124 DOI: 10.1155/2017/1468957
    Breast cancer is the second leading cause of cancer death among women and despite significant advances in therapy, it remains a critical health problem worldwide. Allium atroviolaceum is an herbaceous plant, with limited information about the therapeutic capability. We aimed to study the anticancer effect of flower extract and the mechanisms of action in MCF-7 and MDA-MB-231. The extract inhibits the proliferation of the cells in a time- and dose-dependent manner. The underlying mechanism involved the stimulation of S and G2/M phase arrest in MCF-7 and S phase arrest in MDA-MB-231 associated with decreased level of Cdk1, in a p53-independent pathway. Furthermore, the extract induces apoptosis in both cell lines, as indicated by the percentage of sub-G0 population, the morphological changes observed by phase contrast and fluorescent microscopy, and increase in Annexin-V-positive cells. The apoptosis induction was related to downregulation of Bcl-2 and also likely to be caspase-dependent. Moreover, the combination of the extract and tamoxifen exhibits synergistic effect, suggesting that it can complement current chemotherapy. LC-MS analysis displayed 17 major compounds in the extract which might be responsible for the observed effects. Overall, this study demonstrates the potential applications of Allium atroviolaceum extract as an anticancer drug for breast cancer treatment.
    Matched MeSH terms: S Phase
  20. Alabsi AM, Lim KL, Paterson IC, Ali-Saeed R, Muharram BA
    Biomed Res Int, 2016;2016:4904016.
    PMID: 27123447 DOI: 10.1155/2016/4904016
    Dracaena cinnabari Balf.f. is a red resin endemic to Socotra Island, Yemen. Although there have been several reports on its therapeutic properties, information on its cytotoxicity and anticancer effects is very limited. This study utilized a bioassay-guided fractionation approach to determine the cytotoxic and apoptosis-inducing effects of D. cinnabari on human oral squamous cell carcinoma (OSCC). The cytotoxic effects of D. cinnabari crude extract were observed in a panel of OSCC cell lines and were most pronounced in H400. Only fractions DCc and DCd were active on H400 cells; subfractions DCc15 and DCd16 exhibited the greatest cytotoxicity against H400 cells and D. cinnabari inhibited cells proliferation in a time-dependent manner. This was achieved primarily via apoptosis where externalization of phospholipid phosphatidylserine was observed using DAPI/Annexin V fluorescence double staining mechanism studied through mitochondrial membrane potential assay cytochrome c enzyme-linked immunosorbent and caspases activities revealed depolarization of mitochondrial membrane potential (MMP) and significant activation of caspases 9 and 3/7, concomitant with S phase arrest. Apoptotic proteins array suggested that MMP was regulated by Bcl-2 proteins family as results demonstrated an upregulation of Bax, Bad, and Bid as well as downregulation of Bcl-2. Hence, D. cinnabari has the potential to be developed as an anticancer agent.
    Matched MeSH terms: S Phase/drug effects
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links