Displaying all 14 publications

Abstract:
Sort:
  1. Yew GY, Tham TC, Show PL, Ho YC, Ong SK, Law CL, et al.
    Appl Biochem Biotechnol, 2020 May;191(1):1-28.
    PMID: 32006247 DOI: 10.1007/s12010-019-03207-7
    The sustainability of nitrile glove production process is essential both in the financial and energy perspective. Nitrile glove has the lowest material cost with positive mechanical and chemical performance quality for the disposable glove market. Nitrile glove also holds a major market in disposable gloves sector, and nitrile rubber compounds may contribute to the huge reduction of the capital cost for a pair of surgical gloves due to the inexpensive raw material compares with other synthetic polyisoprene or neoprene. Hence, blending of bio-additive into the nitrile latex might support the 3 pillars of sustainability for environmental, societal, and financial sector. Bio-additives helps increase the degradation rate of gloves under natural conditions. Bio-based substances could be derived from food waste, natural plants, and aquatic plants like micro- and macro algae. Furthermore, antimicrobial agent (e.g. brilliant green and cyclohexadiene) is the trend in surgical glove for coated as protecting layer, due to the capability to remove pathogens or bacterial on the surgeon hands during operation period. Besides, the section in energy recovery is a proposing gateway for reducing the financial cost and makes the process sustainable.
    Matched MeSH terms: Rubber/chemistry*
  2. Ibrahim MR, Katman HY, Karim MR, Koting S, Mashaan NS
    ScientificWorldJournal, 2014;2014:240786.
    PMID: 24574875 DOI: 10.1155/2014/240786
    The main objective of this paper is to investigate the relations of rubber size, rubber content, and binder content in determination of optimum binder content for open graded friction course (OGFC). Mix gradation type B as specified in Specification for Porous Asphalt produced by the Road Engineering Association of Malaysia (REAM) was used in this study. Marshall specimens were prepared with four different sizes of rubber, namely, 20 mesh size [0.841 mm], 40 mesh [0.42 mm], 80 mesh [0.177 mm], and 100 mesh [0.149 mm] with different concentrations of rubberised bitumen (4%, 8%, and 12%) and different percentages of binder content (4%-7%). The appropriate optimum binder content is then selected according to the results of the air voids, binder draindown, and abrasion loss test. Test results found that crumb rubber particle size can affect the optimum binder content for OGFC.
    Matched MeSH terms: Rubber/chemistry*
  3. Mashaan NS, Ali AH, Karim MR, Abdelaziz M
    ScientificWorldJournal, 2014;2014:214612.
    PMID: 24688369 DOI: 10.1155/2014/214612
    An immense problem affecting environmental pollution is the increase of waste tyre vehicles. In an attempt to decrease the magnitude of this issue, crumb rubber modifier (CRM) obtained from waste tyre rubber has gained interest in asphalt reinforcement. The use of crumb rubber in the reinforcement of asphalt is considered as a smart solution for sustainable development by reusing waste materials, and it is believed that crumb rubber modifier (CRM) could be an alternative polymer material in improving hot mix asphalt performance properties. In this paper, a critical review on the use of crumb rubber in reinforcement of asphalt pavement will be presented and discussed. It will also include a review on the effects of CRM on the stiffness, rutting, and fatigue resistance of road pavement construction.
    Matched MeSH terms: Rubber/chemistry*
  4. Hamzah R, Bakar MA, Khairuddean M, Mohammed IA, Adnan R
    Molecules, 2012 Sep 12;17(9):10974-93.
    PMID: 22971583 DOI: 10.3390/molecules170910974
    A structural study of epoxidized natural rubber (ENR-50) and its cyclic dithiocarbonate derivative was carried out using NMR spectroscopy techniques. The overlapping (1)H-NMR signals of ENR-50 at δ 1.56, 1.68-1.70, 2.06, 2.15-2.17 ppm were successfully assigned. In this work, the C=S and quaternary carbon of cyclic dithiocarbonate. All other (1)H- and (13)C-NMR chemical shifts of the derivative remain unchanged with respect to the ENR-50.
    Matched MeSH terms: Rubber/chemistry*
  5. Rajisha KR, Maria HJ, Pothan LA, Ahmad Z, Thomas S
    Int J Biol Macromol, 2014 Jun;67:147-53.
    PMID: 24657376 DOI: 10.1016/j.ijbiomac.2014.03.013
    Potato starch nanocrystals were found to serve as an effective reinforcing agent for natural rubber (NR). Starch nanocrystals were obtained by the sulfuric acid hydrolysis of potato starch granules. After mixing the latex and the starch nanocrystals, the resulting aqueous suspension was cast into film by solvent evaporation method. The composite samples were successfully prepared by varying filler loadings, using a colloidal suspension of starch nanocrystals and NR latex. The morphology of the nanocomposite prepared was analyzed by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). FESEM analysis revealed the size and shape of the crystal and their homogeneous dispersion in the composites. The crystallinity of the nanocomposites was studied using XRD analysis which indicated an overall increase in crystallinity with filler content. The mechanical properties of the nanocomposites such as stress-strain behavior, tensile strength, tensile modulus and elongation at break were measured according to ASTM standards. The tensile strength and modulus of the composites were found to improve tremendously with increasing nanocrystal content. This dramatic increase observed can be attributed to the formation of starch nanocrystal network. This network immobilizes the polymer chains leading to an increase in the modulus and other mechanical properties.
    Matched MeSH terms: Rubber/chemistry
  6. Vijayaraghavan K, Ahmad D, Yazid AY
    J Hazard Mater, 2008 Jan 31;150(2):351-6.
    PMID: 17543454
    A new method of Standard Malaysian Rubber (SMR) process wastewater treatment was developed based on in situ hypochlorous acid generation. The hypochlorous acid was generated in an undivided electrolytic cell consisting of two sets of graphite as anode and stainless sheets as cathode. The generated hypochlorous acid served as an oxidizing agent to destroy the organic matter present in the SMR wastewater. For an influent COD concentration of 2960 mg/L at an initial pH 4.5+/-0.1, current density 74.5 mA/cm(2), sodium chloride content 3% and electrolysis period of 75 min, resulted in the following residual values pH 7.5, COD 87 mg/L, BOD(5) 60 mg/L, TOC 65 mg/L, total chlorine 146 mg/L, turbidity 7 NTU and temperature 48 degrees C, respectively. In the case of 2% sodium chloride as an electrolyte for the above said operating condition resulted in the following values namely: pH 7.2, COD 165 mg/L, BOD(5) 105 mg/L, TOC 120 mg/L, total chlorine 120 mg/L, turbidity 27 NTU and temperature 53 degrees C, respectively. The energy requirement were found to be 30 and 46 Wh/L, while treating 24 L of SMR wastewater at 2 and 3% sodium chloride concentration at a current density 74.5 mA/cm(2). The observed energy difference was due to the improved conductivity at high sodium chloride content.
    Matched MeSH terms: Rubber/chemistry*
  7. Yunus NA, Mazlan SA, Ubaidillah, Abdul Aziz SA, Tan Shilan S, Abdul Wahab NA
    Int J Mol Sci, 2019 Feb 10;20(3).
    PMID: 30744210 DOI: 10.3390/ijms20030746
    Determination of the thermal characteristics and temperature-dependent rheological properties of the magnetorheological elastomers (MREs) is of paramount importance particularly with regards to MRE applications. Hitherto, a paucity of temperature dependent analysis has been conducted by MRE researchers. In this study, an investigation on the thermal and rheological properties of epoxidized natural rubber (ENR)-based MREs was performed. Various percentages of carbonyl iron particles (CIPs) were blended with the ENR compound using a two roll-mill for the preparation of the ENR-based MRE samples. The morphological, elemental, and thermal analyses were performed before the rheological test. Several characterizations, as well as the effects of the strain amplitude, temperature, and magnetic field on the rheological properties of ENR-based MRE samples, were evaluated. The micrographs and elemental results were well-correlated regarding the CIP and Fe contents, and a uniform distribution of CIPs was achieved. The results of the thermal test indicated that the incorporation of CIPs enhanced the thermal stability of the ENR-based MREs. Based on the rheological analysis, the storage modulus and loss factor were dependent on the CIP content and strain amplitude. The effect of temperature on the rheological properties revealed that the stiffness of the ENR-based MREs was considered stable, and they were appropriate to be employed in the MRE devices exposed to high temperatures above 45 °C.
    Matched MeSH terms: Rubber/chemistry*
  8. Anis S, Zainal ZA
    Bioresour Technol, 2013 Dec;150:328-37.
    PMID: 24185417 DOI: 10.1016/j.biortech.2013.10.010
    This study focused on improving the producer gas quality using radio frequency (RF) tar thermocatalytic treatment reactor. The producer gas containing tar, particles and water was directly passed at a particular flow rate into the RF reactor at various temperatures for catalytic and thermal treatments. Thermal treatment generates higher heating value of 5.76 MJ Nm(-3) at 1200°C. Catalytic treatments using both dolomite and Y-zeolite provide high tar and particles conversion efficiencies of about 97% on average. The result also showed that light poly-aromatic hydrocarbons especially naphthalene and aromatic compounds particularly benzene and toluene were still found even at higher reaction temperatures. Low energy intensive RF tar thermocatalytic treatment was found to be effective for upgrading the producer gas quality to meet the end user requirements and increasing its energy content.
    Matched MeSH terms: Rubber/chemistry*
  9. Juhaida MF, Paridah MT, Mohd Hilmi M, Sarani Z, Jalaluddin H, Mohamad Zaki AR
    Bioresour Technol, 2010 Feb;101(4):1355-60.
    PMID: 19833509 DOI: 10.1016/j.biortech.2009.09.048
    A study was carried out to produce polyurethane (PU) as a wood laminating adhesive from liquefied kenaf core (LKC) polyols by reacting it with toluene-2,4-diisocyanate (TDI) and 1,4-butanediol (BDO). The LKC polyurethane (LKCPU) adhesive has a molecular weight (MW) of 2666, viscosity of 5370 mPa s, and solids content of 86.9%. The average shear strength of the rubberwood (RW) bonded with LKCPU adhesive was 2.9 MPa. Most of the sheared specimens experienced a total adhesive failure. The formation of air bubbles through the liberation of carbon dioxide was observed to reduce the adhesive penetration and bonding strength which was obviously seen on the sheared specimens. The percentage of catalyst used can be varied based on the usage and working time needed. Nonetheless, the physical properties of LKCPU produced in this work had shown good potential as edge-bonding adhesive.
    Matched MeSH terms: Rubber/chemistry
  10. Kumutha K, Alias Y
    Spectrochim Acta A Mol Biomol Spectrosc, 2006 May 15;64(2):442-7.
    PMID: 16530471
    Chemical modification of natural rubber (NR) has frequently been attempted to improve the performance in specific application. 30% poly(methyl metacrylate) (PMMA) grafted into NR (MG30) has been explored as a potential candidate for polymer electrolytes. The complexation effect of salt and plasticizer in polymer host electrolytes had been investigated using FTIR. The carbonyl stretch of MG30 locates at 1729 cm-1, with the addition of lithium trimethanesulfonate (LiCF3SO3) salt, new band evolves at lower frequency region at 1643-1645 cm-1. The nondegenerate vibrational mode of nus(SO3) of salted electrolytes appearing at 1031-1034 cm-1 comes from 'free' trimethanesulfonate anions and the 1040-1046 cm-1 absorption from the monodentate ion paired with triflates. These indicate MG30-salt interaction. When MG30 and ethylene carbonate (EC) formed film, the CH3 asymmetric bend of MG30 appearing at 1447cm-1 is shifted to 1449 cm-1 in the EC-polymer complex. The CO stretching at 1729 cm-1 also shifted to 1728 cm-1. Hence, the EC-MG30 system is complexed to each other. EC-LiCF3SO3 interactions are indicated by the shifting of CO bending band of EC from 718 cm-1 being shifted to 720 cm-1 in the complex. In Li+-EC interaction where the ring breathing region at 897 cm-1 in EC has shifted to 899 cm-1 in EC-salt spectrum. The band appearing at 1643-1645 cm-1 due to the coordination of Li+
    Matched MeSH terms: Rubber/chemistry*
  11. Al-Mansob RA, Ismail A, Yusoff NI, Rahmat RA, Borhan MN, Albrka SI, et al.
    PLoS One, 2017;12(2):e0171648.
    PMID: 28182724 DOI: 10.1371/journal.pone.0171648
    Road distress results in high maintenance costs. However, increased understandings of asphalt behaviour and properties coupled with technological developments have allowed paving technologists to examine the benefits of introducing additives and modifiers. As a result, polymers have become extremely popular as modifiers to improve the performance of the asphalt mix. This study investigates the performance characteristics of epoxidized natural rubber (ENR)-modified hot-mix asphalt. Tests were conducted using ENR-asphalt mixes prepared using the wet process. Mechanical testing on the ENR-asphalt mixes showed that the resilient modulus of the mixes was greatly affected by testing temperature and frequency. On the other hand, although rutting performance decreased at high temperatures because of the increased elasticity of the ENR-asphalt mixes, fatigue performance improved at intermediate temperatures as compared to the base mix. However, durability tests indicated that the ENR-asphalt mixes were slightly susceptible to the presence of moisture. In conclusion, the performance of asphalt pavement can be enhanced by incorporating ENR as a modifier to counter major road distress.
    Matched MeSH terms: Rubber/chemistry*
  12. Yeang HY, Cheong KF, Sunderasan E, Hamzah S, Chew NP, Hamid S, et al.
    J Allergy Clin Immunol, 1996 Sep;98(3):628-39.
    PMID: 8828541 DOI: 10.1016/s0091-6749(96)70097-0
    Two major water-insoluble proteins are located on the surface of rubber particles in Hevea brasiliensis latex. A 14.6 kd protein (Hev b 1), found mainly on large rubber particles (> 350 mm in diameter), and a 24 kd protein (Hev b 3), found mainly on small rubber particles (average diameter, 70 nm), are recognized by IgE from patients with spina bifida and latex allergy. Although Hev b 1 (also called the rubber elongation factor [REF]) has previously been reported as a major latex allergen, this conclusion has been disputed on the basis of results from other studies. The allergenicity of Hev b 1 is verified in this study by testing the recombinant protein generated from its gene. Because allergenicity is confined to patients with spina bifida and not observed in adults sensitive to latex, it is not a major latex allergen. The identification of Hev b 3 as another allergen originating from rubber particles is confirmed by immunogold labeling and electron microscopy. Observations with the monoclonal antibody USM/RC2 developed against Hev b 3 show that the protein has a tendency to fragment into several polypeptides of lower molecular weight (from 24 kd to about 5 kd) when stored at -20 degrees C. There is also indication of protein aggregation from the appearance of proteins with molecular weights greater than 24 kd. Fragmentation of Hev b 3 is induced immediately on he addition of latex B-serum, which is normally compartmentalized in the lutoids in fresh latex. In the preparation of ammoniated latex (used for the manufacture of latex products), the lutoids are ruptured, and the released B-serum reacts with Hev b 3 on the rubber particles to give rise to an array of low molecular weight polypeptides that are allergenic to patients with spina bifida.
    Matched MeSH terms: Rubber/chemistry*
  13. Yeang HY, Hamilton RG, Bernstein DI, Arif SA, Chow KS, Loke YH, et al.
    Clin Exp Allergy, 2006 Aug;36(8):1078-86.
    PMID: 16911364 DOI: 10.1111/j.1365-2222.2006.02531.x
    BACKGROUND:
    Hevea brasiliensis latex serum is commonly used as the in vivo and in vitro reference antigen for latex allergy diagnosis as it contains the full complement of latex allergens.

    OBJECTIVE:
    This study quantifies the concentrations of the significant allergens in latex serum and examines its suitability as an antigen source in latex allergy diagnosis and immunotherapy.

    METHODS:
    The serum phase was extracted from centrifuged latex that was repeatedly freeze-thawed or glycerinated. Quantitation of latex allergens was performed by two-site immunoenzymetric assays. The abundance of RNA transcripts of the latex allergens was estimated from the number of their clones in an Expressed Sequence Tags library.

    RESULTS:
    The latex allergens, Hev b 1, 2, 3, 4, 5, 6, 7 and 13, were detected in freeze-thawed and glycerinated latex serum at levels ranging from 75 (Hev b 6) to 0.06 nmol/mg total proteins (Hev b 4). Hev b 6 content in the latex was up to a thousand times higher than the other seven latex allergens, depending on source and/or preparation procedure. Allergen concentration was reflected in the abundance of mRNA transcripts. When used as the antigen, latex serum may bias the outcome of latex allergy diagnostic tests towards sensitization to Hev b 6. Tests that make use of latex serum may fail to detect latex-specific IgE reactivity in subjects who are sensitized only to allergens that are present at low concentrations.

    CONCLUSION:
    Latex allergy diagnostics and immunotherapy that use whole latex serum as the antigen source may not be optimal because of the marked imbalance of its constituent allergens.
    Matched MeSH terms: Rubber/chemistry*
  14. Supramaniam J, Low DYS, Wong SK, Tan LTH, Leo BF, Goh BH, et al.
    Int J Mol Sci, 2021 May 28;22(11).
    PMID: 34071337 DOI: 10.3390/ijms22115781
    Cellulose nanofibers (CNF) isolated from plant biomass have attracted considerable interests in polymer engineering. The limitations associated with CNF-based nanocomposites are often linked to the time-consuming preparation methods and lack of desired surface functionalities. Herein, we demonstrate the feasibility of preparing a multifunctional CNF-zinc oxide (CNF-ZnO) nanocomposite with dual antibacterial and reinforcing properties via a facile and efficient ultrasound route. We characterized and examined the antibacterial and mechanical reinforcement performances of our ultrasonically induced nanocomposite. Based on our electron microscopy analyses, the ZnO deposited onto the nanofibrous network had a flake-like morphology with particle sizes ranging between 21 to 34 nm. pH levels between 8-10 led to the formation of ultrafine ZnO particles with a uniform size distribution. The resultant CNF-ZnO composite showed improved thermal stability compared to pure CNF. The composite showed potent inhibitory activities against Gram-positive (methicillin-resistant Staphylococcus aureus (MRSA)) and Gram-negative Salmonella typhi (S. typhi) bacteria. A CNF-ZnO-reinforced natural rubber (NR/CNF-ZnO) composite film, which was produced via latex mixing and casting methods, exhibited up to 42% improvement in tensile strength compared with the neat NR. The findings of this study suggest that ultrasonically-synthesized palm CNF-ZnO nanocomposites could find potential applications in the biomedical field and in the development of high strength rubber composites.
    Matched MeSH terms: Rubber/chemistry
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links