Displaying all 7 publications

Abstract:
Sort:
  1. Mun PS, Ting HN, Ong TA, Wong CM, Ng KH, Chong YB
    PLoS One, 2015;10(6):e0130011.
    PMID: 26066351 DOI: 10.1371/journal.pone.0130011
    This paper investigates the dielectric properties of urine in normal subjects and subjects with chronic kidney disease (CKD) at microwave frequency of between 0.2 GHz and 50 GHz. The measurements were conducted using an open-ended coaxial probe at room temperature (25°C), at 30°C and at human body temperature (37°C). There were statistically significant differences in the dielectric properties of the CKD subjects compared to those of the normal subjects. Statistically significant differences in dielectric properties were observed across the temperatures for normal subjects and CKD subjects. Pearson correlation test showed the significant correlation between proteinuria and dielectric properties. The experimental data closely matched the single-pole Debye model. The relaxation dispersion and relaxation time increased with the proteinuria level, while decreasing with the temperature. As for static conductivity, it increased with proteinuria level and temperature.
    Matched MeSH terms: Renal Insufficiency, Chronic/urine*
  2. Bidin MZ, Shah AM, Stanslas J, Seong CLT
    Clin Chim Acta, 2019 Aug;495:239-250.
    PMID: 31009602 DOI: 10.1016/j.cca.2019.04.069
    INTRODUCTION: Chronic kidney disease (CKD) is a silent disease. Most CKD patients are unaware of their condition during the early stages of the disease which poses a challenge for healthcare professionals to institute treatment or start prevention. The trouble with the diagnosis of CKD is that in most parts of the world, it is still diagnosed based on measurements of serum creatinine and corresponding calculations of eGFR. There are controversies with the current staging system, especially in the methodology to diagnose and prognosticate CKD.

    OBJECTIVE: The aim of this review is to examine studies that focused on the different types of samples which may serve as a good and promising biomarker for early diagnosis of CKD or to detect rapidly declining renal function among CKD patient.

    METHOD: The review of international literature was made on paper and electronic databases Nature, PubMed, Springer Link and Science Direct. The Scopus index was used to verify the scientific relevance of the papers. Publications were selected based on the inclusion and exclusion criteria.

    RESULT: 63 publications were found to be compatible with the study objectives. Several biomarkers of interest with different sample types were taken for comparison.

    CONCLUSION: Biomarkers from urine samples yield more significant outcome as compare to biomarkers from blood samples. But, validation and confirmation with a different type of study designed on a larger population is needed. More comparison studies on different types of samples are needed to further illuminate which biomarker is the better tool for the diagnosis and prognosis of CKD.

    Matched MeSH terms: Renal Insufficiency, Chronic/urine*
  3. Almualm Y, Zaman Huri H
    Glob J Health Sci, 2015;7(4):96-109.
    PMID: 25946939 DOI: 10.5539/gjhs.v7n4p96
    Chronic Kidney Disease has become a public health problem, imposing heath, social and human cost on societies worldwide. Chronic Kidney Disease remains asymptomatic till late stage when intervention cannot stop the progression of the disease. Therefore, there is an urgent need to detect the disease early. Despite the high prevalence of Chronic Kidney Disease in Malaysia, screening is still lacking behind. This review discusses the strengths and limitations of current screening methods for Chronic Kidney Disease from a Malaysian point of view. Diabetic Kidney Disease was chosen as focal point as Diabetes is the leading cause of Chronic Kidney Disease in Malaysia. Screening for Chronic Kidney Disease in Malaysia includes a urine test for albuminuria and a blood test for serum creatinine. Recent literature indicates that albuminuria is not always present in Diabetic Kidney Disease patients and serum creatinine is only raised after substantial kidney damage has occurred.  Recently, cystatin C was proposed as a potential marker for kidney disease but this has not been studied thoroughly in Malaysia.  Glomerular Filtration Rate is the best method for measuring kidney function and is widely estimated using the Modification of Diet for Renal Disease equation. Another equation, the Chronic Kidney Disease Epidemiology Collaboration Creatinine equation was introduced in 2009. The new equation retained the precision and accuracy of the Modification of Diet for Renal Disease equation at GFR < 60ml/min/1.73m2, showed less bias and improved precision at GFR>60ml/min/1.73m2. In Asian countries, adding an ethnic coefficient to the equation enhanced its performance. In Malaysia, a multi-ethnic Asian population, the Chronic Kidney Disease Epidemiology Collaboration equation should be validated and the Glomerular Filtration Rate should be reported whenever serum creatinine is ordered. Reporting estimated Glomerular Filtration Rate will help diagnose patients who would have been otherwise missed if only albuminuria and serum creatinine are measured.
    Matched MeSH terms: Renal Insufficiency, Chronic/urine
  4. Teo BW, Bagchi S, Xu H, Toh QC, Li J, Lee EJ
    Singapore Med J, 2014 Dec;55(12):652-5.
    PMID: 25630320
    INTRODUCTION: Clinical practice guidelines recommend using creatinine-based equations to estimate glomerular filtration rates (GFRs). While these equations were formulated for Caucasian-American populations and have adjustment coefficients for African-American populations, they are not validated for other ethnicities. The Chronic Kidney Disease-Epidemiology Collaborative Group (CKD-EPI) recently developed a new equation that uses both creatinine and cystatin C. We aimed to assess the accuracy of this equation in estimating the GFRs of participants (healthy and with chronic kidney disease [CKD]) from a multiethnic Asian population.

    METHODS: Serum samples from the Asian Kidney Disease Study and the Singapore Kidney Function Study were used. GFR was measured using plasma clearance of 99mTc-DTPA. GFR was estimated using the CKD-EPI equations. The performance of GFR estimation equations were examined using median and interquartile range values, and the percentage difference from the measured GFR.

    RESULTS: The study comprised 335 participants (69.3% with CKD; 38.5% Chinese, 29.6% Malays, 23.6% Indians, 8.3% others), with a mean age of 53.5 ± 15.1 years. Mean standardised serum creatinine was 127 ± 86 μmol/L, while mean standardised serum cystatin C and mean measured GFR were 1.43 ± 0.74 mg/L and 67 ± 33 mL/min/1.73 m2, respectively. The creatinine-cystatin C CKD-EPI equation performed the best, with an estimated GFR of 67 ± 35 mL/min/1.73 m2.

    CONCLUSION: The new creatinine-cystatin C equation estimated GFR with little bias, and had increased precision and accuracy in our multiethnic Asian population. This two-biomarker equation may increase the accuracy of population studies on CKD, without the need to consider ethnicity.
    Matched MeSH terms: Renal Insufficiency, Chronic/urine*
  5. Teo BW, Koh YY, Toh QC, Li J, Sinha AK, Shuter B, et al.
    Singapore Med J, 2014 Dec;55(12):656-9.
    PMID: 25630321
    INTRODUCTION: Clinical practice guidelines recommend using creatinine-based equations to estimate glomerular filtration rates (GFRs). While these equations were formulated for Caucasian-American populations and have adjustment coefficients for African-American populations, they are not validated for other ethnicities. The Chronic Kidney Disease-Epidemiology Collaborative Group (CKD-EPI) recently developed a new equation that uses both creatinine and cystatin C. We aimed to assess the accuracy of this equation in estimating the GFRs of participants (healthy and with chronic kidney disease [CKD]) from a multiethnic Asian population.

    METHODS: Serum samples from the Asian Kidney Disease Study and the Singapore Kidney Function Study were used. GFR was measured using plasma clearance of 99mTc-DTPA. GFR was estimated using the CKD-EPI equations. The performance of GFR estimation equations were examined using median and interquartile range values, and the percentage difference from the measured GFR.

    RESULTS: The study comprised 335 participants (69.3% with CKD; 38.5% Chinese, 29.6% Malays, 23.6% Indians, 8.3% others), with a mean age of 53.5 ± 15.1 years. Mean standardised serum creatinine was 127 ± 86 μmol/L, while mean standardised serum cystatin C and mean measured GFR were 1.43 ± 0.74 mg/L and 67 ± 33 mL/min/1.73 m2, respectively. The creatinine-cystatin C CKD-EPI equation performed the best, with an estimated GFR of 67 ± 35 mL/min/1.73 m2.

    CONCLUSION: The new creatinine-cystatin C equation estimated GFR with little bias, and had increased precision and accuracy in our multiethnic Asian population. This two-biomarker equation may increase the accuracy of population studies on CKD, without the need to consider ethnicity.
    Matched MeSH terms: Renal Insufficiency, Chronic/urine*
  6. Chin WS, Hung WL, Say YH, Chien LC, Chen YC, Lo YP, et al.
    Environ Pollut, 2024 Dec 15;363(Pt 1):125090.
    PMID: 39393761 DOI: 10.1016/j.envpol.2024.125090
    Chronic kidney disease (CKD) poses a significant global public health challenge, with environmental toxins potentially contributing to its prevalence. In Taiwan, where arsenic (As) contamination is endemic in certain areas, assessing its impact on renal health is crucial due to the country's high rates of unexplained CKD. This cross-sectional study assessed associations between urinary As species and early renal impairment biomarkers-the microalbumin-to-creatinine ratio (ACR) and β2-microglobulin (B2MG)-in 248 young Taiwanese adults (aged 20-29 years). We measured urinary As species (including arsenite [As3+], arsenate [As5+], monomethylarsonic acid [MMA], and dimethylarsinic acid [DMA]) and early renal impairment biomarkers (urinary microalbumin and B2MG levels). Median concentrations of urinary As3+, As5+, MMA, DMA, inorganic As (iAs), and the sum of inorganic and methylated As species (iSumAs) were 1.43, 1.02, 3.79, 31.53, 2.82, and 39.22 μg/g creatinine (Cre.), respectively. We also evaluated the first methylation ratio (FMR) and the second methylation ratio (SMR). After adjusting for potential confounding factors, a multivariate linear regression showed significant associations between B2MG and urinary As5+ (β = 0.299, 95% confidence interval [CI]: 0.113-0.485) and iAs (β = 0.281, 95% CI: 0.061-0.502) concentrations. A generalized additive model revealed non-linear relationships among As5+, iAs, and B2MG concentrations. Moreover, there were elevated risks associated with the highest tertile of B2MG concentrations compared to the highest tertile of urinary As5+ (odds ratio [OR] = 2.366, 95% CI: 1.196-4.682), MMA (OR = 1.917, 95% CI: 1.002-3.666), DMA (OR = 1.952, 95% CI: 1.015-3.753), and iSumAs (OR = 2.302, 95% CI: 1.182-4.483). These results indicated that exposure to As was associated with early renal impairment, particularly evidenced by increased urinary B2MG concentrations.
    Matched MeSH terms: Renal Insufficiency, Chronic/urine
  7. Hooi LS, Ong LM, Ahmad G, Bavanandan S, Ahmad NA, Naidu BM, et al.
    Kidney Int, 2013 Nov;84(5):1034-40.
    PMID: 23760287 DOI: 10.1038/ki.2013.220
    In this population-based study, we determine the prevalence of chronic kidney disease in West Malaysia in order to have accurate information for health-care planning. A sample of 876 individuals, representative of 15,147 respondents from the National Health and Morbidity Survey 2011, of the noninstitutionalized adult population (over 18 years old) in West Malaysia was studied. We measured the estimated glomerular filtration rate (eGFR) (CKD-EPI equation); albuminuria and stages of chronic kidney disease were derived from calibrated serum creatinine, age, gender and early morning urine albumin creatinine ratio. The prevalence of chronic kidney disease in this group was 9.07%. An estimated 4.16% had stage 1 chronic kidney disease (eGFR >90 ml/min per 1.73 m(2) and persistent albuminuria), 2.05% had stage 2 (eGFR 60-89 ml/min per 1.73 m(2) and persistent albuminuria), 2.26% had stage 3 (eGFR 30-59 ml/min per 1.73 m(2)), 0.24% had stage 4 (eGFR 15-29 ml/min per 1.73 m(2)), and 0.36% had stage 5 chronic kidney disease (eGFR <15 ml/min per 1.73 m(2)). Only 4% of respondents with chronic kidney disease were aware of their diagnosis. Risk factors included increased age, diabetes, and hypertension. Thus, chronic kidney disease in West Malaysia is common and, therefore, warrants early detection and treatment in order to potentially improve outcome.
    Study name: National Health and Morbidity Survey (NHMS-2011)
    Matched MeSH terms: Renal Insufficiency, Chronic/urine
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links