Displaying all 3 publications

Abstract:
Sort:
  1. Dass SA, Selva Rajan R, Tye GJ, Balakrishnan V
    Hum Vaccin Immunother, 2021 09 02;17(9):2981-2994.
    PMID: 33989511 DOI: 10.1080/21645515.2021.1913960
    Cervical cancer is ranked as the fourth most common cancer in women worldwide. Monoclonal antibody has created a new dimension in the immunotherapy of many diseases, including cervical cancer. The antibody's ability to target various aspects of cervical cancer (oncoviruses, oncoproteins, and signaling pathways) delivers a promising future for efficient immunotherapy. Besides, technologies such as hybridoma and phage display provide a fundamental platform for monoclonal antibody generation and create the opportunity to generate novel antibody classes including, T cell receptor (TCR)-like antibody. In this review, the current immunotherapy strategies for cervical cancer are presented. We have also proposed a novel concept of T cell receptor (TCR)-like antibody and its potential applications for enhancing cervical cancer therapeutics. Finally, the possible challenges in TCR-like antibody application for cervical cancer therapeutics have been addressed, and strategies to overcome the challenges have been highlighted to maximize the therapeutic benefits.
    Matched MeSH terms: Receptors, Antigen, T-Cell/genetics
  2. Chai HC, Phipps ME, Chua KH
    Clin. Dev. Immunol., 2012;2012:963730.
    PMID: 21941582 DOI: 10.1155/2012/963730
    SLE is an autoimmune disease that is not uncommon in Malaysia. In contrast to Malays and Indians, the Chinese seem to be most affected. SLE is characterized by deficiency of body's immune response that leads to production of autoantibodies and failure of immune complex clearance. This minireview attempts to summarize the association of several candidate genes with risk for SLE in the Malaysian population and discuss the genetic heterogeneity that exists locally in Asians and in comparison with SLE in Caucasians. Several groups of researchers have been actively investigating genes that are associated with SLE susceptibility in the Malaysian population by screening possible reported candidate genes across the SLE patients and healthy controls. These candidate genes include MHC genes and genes encoding complement components, TNF, FcγR, T-cell receptors, and interleukins. However, most of the polymorphisms investigated in these genes did not show significant associations with susceptibility to SLE in the Malaysian scenario, except for those occurring in MHC genes and genes coding for TNF-α, IL-1β, IL-1RN, and IL-6.
    Matched MeSH terms: Receptors, Antigen, T-Cell/genetics
  3. Munisvaradass R, Kumar S, Govindasamy C, Alnumair KS, Mok PL
    Int J Mol Sci, 2017 Sep 08;18(9).
    PMID: 28885562 DOI: 10.3390/ijms18091797
    Breast cancer is a common malignancy among women. The innate and adaptive immune responses failed to be activated owing to immune modulation in the tumour microenvironment. Decades of scientific study links the overexpression of human epidermal growth factor receptor 2 (ERBB2) antigen with aggressive tumours. The Chimeric Antigen Receptor (CAR) coding for specific tumour-associated antigens could initiate intrinsic T-cell signalling, inducing T-cell activation, and cytotoxic activity without the need for major histocompatibility complex recognition. This renders CAR as a potentially universal immunotherapeutic option. Herein, we aimed to establish CAR in CD3+ T-cells, isolated from human peripheral blood mononucleated cells that could subsequently target and induce apoptosis in the ERBB2 overexpressing human breast cancer cell line, SKBR3. Constructed CAR was inserted into a lentiviral plasmid containing a green fluorescent protein tag and produced as lentiviral particles that were used to transduce activated T-cells. Transduced CAR-T cells were then primed with SKBR3 cells to evaluate their functionality. Results showed increased apoptosis in SKBR3 cells co-cultured with CAR-T cells compared to the control (non-transduced T-cells). This study demonstrates that CAR introduction helps overcome the innate limitations of native T-cells leading to cancer cell apoptosis. We recommend future studies should focus on in vivo cytotoxicity of CAR-T cells against ERBB2 expressing tumours.
    Matched MeSH terms: Receptors, Antigen, T-Cell/genetics
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links