Displaying all 17 publications

Abstract:
Sort:
  1. Ching XT, Lau YL, Fong MY, Nissapatorn V, Andiappan H
    Biomed Res Int, 2014;2014:690529.
    PMID: 24987700 DOI: 10.1155/2014/690529
    Toxoplasma gondii infects all warm-blooded animals, including humans, causing serious public health problems and great economic loss for the food industry. Commonly used serological tests require costly and hazardous preparation of whole Toxoplasma lysate antigens from tachyzoites. Here, we have evaluated an alternative method for antigen production, which involved a prokaryotic expression system. Specifically, we expressed T. gondii dense granular protein-5 (GRA5) in Escherichia coli and isolated it by affinity purification. The serodiagnostic potential of the purified recombinant GRA5 (rGRA5) was tested through Western blot analysis against 212 human patient serum samples. We found that rGRA5 protein was 100% specific for analysis of toxoplasmosis-negative human sera. Also, rGRA5 was able to detect acute and chronic T. gondii infections (sensitivities of 46.8% and 61.2%, resp.).
    Matched MeSH terms: Protozoan Proteins/chemistry*
  2. Chang CH, See Too WC, Lim BH, Few LL
    Acta Parasitol, 2024 Mar;69(1):426-438.
    PMID: 38172465 DOI: 10.1007/s11686-023-00763-1
    PURPOSE: Entamoeba histolytica is one of the death-causing parasites in the world. Study on its lipid composition revealed that it is predominated by phosphatidylcholine and phosphatidylethanolamine. Further study revealed that its phosphorylated metabolites might be produced by the Kennedy pathway. Here, we would like to report on the characterizations of enzymes from this pathway that would provide information for the design of novel inhibitors against these enzymes in future.

    METHODOLOGY: E. histolytica HM-1:IMSS genomic DNA was isolated and two putative choline/ethanolamine kinase genes (EhCK1 and EhCK2) were cloned and expressed from Escherichia coli BL21 strain. Enzymatic characterizations were further carried out on the purified enzymes.

    RESULTS: EhCK1 and EhCK2 were identified from E. histolytica genome. The deduced amino acid sequences were more identical to its homologues in human (35-48%) than other organisms. The proteins were clustered as ethanolamine kinase in the constructed phylogeny tree. Sequence analysis showed that they possessed all the conserved motifs in choline kinase family: ATP-binding loop, Brenner's phosphotransferase motif, and choline kinase motif. Here, the open reading frames were cloned, expressed, and purified to apparent homogeneity. EhCK1 showed activity with choline but not ethanolamine. The biochemical characterization showed that it had a Vmax of 1.9 ± 0.1 µmol/min/mg. Its Km for choline and ATP was 203 ± 26 µM and 3.1 ± 0.4 mM, respectively. In contrast, EhCK2 enzymatic activity was only detected when Mn2+ was used as the co-factor instead of Mg2+ like other choline/ethanolamine kinases. Highly sensitive and specific antibody against EhCK1 was developed and used to confirm the endogenous EhCK1 expression using immunoblotting.

    CONCLUSIONS: With the understanding of EhC/EK importance in phospholipid metabolism and their unique characteristic, EhC/EK could be a potential target for future anti-amoebiasis study.

    Matched MeSH terms: Protozoan Proteins/chemistry
  3. Amiruddin N, Lee XW, Blake DP, Suzuki Y, Tay YL, Lim LS, et al.
    BMC Genomics, 2012 Jan 13;13:21.
    PMID: 22244352 DOI: 10.1186/1471-2164-13-21
    BACKGROUND: Eimeria tenella is an apicomplexan parasite that causes coccidiosis in the domestic fowl. Infection with this parasite is diagnosed frequently in intensively reared poultry and its control is usually accorded a high priority, especially in chickens raised for meat. Prophylactic chemotherapy has been the primary method used for the control of coccidiosis. However, drug efficacy can be compromised by drug-resistant parasites and the lack of new drugs highlights demands for alternative control strategies including vaccination. In the long term, sustainable control of coccidiosis will most likely be achieved through integrated drug and vaccination programmes. Characterisation of the E. tenella transcriptome may provide a better understanding of the biology of the parasite and aid in the development of a more effective control for coccidiosis.

    RESULTS: More than 15,000 partial sequences were generated from the 5' and 3' ends of clones randomly selected from an E. tenella second generation merozoite full-length cDNA library. Clustering of these sequences produced 1,529 unique transcripts (UTs). Based on the transcript assembly and subsequently primer walking, 433 full-length cDNA sequences were successfully generated. These sequences varied in length, ranging from 441 bp to 3,083 bp, with an average size of 1,647 bp. Simple sequence repeat (SSR) analysis identified CAG as the most abundant trinucleotide motif, while codon usage analysis revealed that the ten most infrequently used codons in E. tenella are UAU, UGU, GUA, CAU, AUA, CGA, UUA, CUA, CGU and AGU. Subsequent analysis of the E. tenella complete coding sequences identified 25 putative secretory and 60 putative surface proteins, all of which are now rational candidates for development as recombinant vaccines or drug targets in the effort to control avian coccidiosis.

    CONCLUSIONS: This paper describes the generation and characterisation of full-length cDNA sequences from E. tenella second generation merozoites and provides new insights into the E. tenella transcriptome. The data generated will be useful for the development and validation of diagnostic and control strategies for coccidiosis and will be of value in annotation of the E. tenella genome sequence.

    Matched MeSH terms: Protozoan Proteins/chemistry
  4. Han ET, Song TE, Park JH, Shin EH, Guk SM, Kim TY, et al.
    Am J Trop Med Hyg, 2004 Dec;71(6):745-9.
    PMID: 15642964
    To study the genetic diversity of re-emerging Plasmodium vivax in the Republic of Korea, nucleotide sequence variations at the merozoite surface protein-3alpha (PvMSP-3alpha) locus were analyzed using 24 re-emerging isolates and 4 isolates from imported cases. Compared with the well known Belem strain (Brazil), a large number of amino acid substitutions, deletions, and insertions were found at the locus of the isolates examined. The Korean isolates were divided into two allelic types; type I (15 isolates), similar to the Belem strain, and type II (9), similar to the Chess strain (New Guinea). Isolates from imported cases were classified into three types; type III (1 from Malaysia), similar to type B from western Thailand, type IV (1 each from Indonesia and India), and type V (1 from Pakistan), both being new types. Our results have shown that the MSP-3alpha locus of re-emerging Korean P. vivax is dimorphic with two allelic types coexisting in the endemic area.
    Matched MeSH terms: Protozoan Proteins/chemistry
  5. Vulliez-Le Normand B, Faber BW, Saul FA, van der Eijk M, Thomas AW, Singh B, et al.
    PLoS One, 2015;10(4):e0123567.
    PMID: 25886591 DOI: 10.1371/journal.pone.0123567
    The malaria parasite Plasmodium knowlesi, previously associated only with infection of macaques, is now known to infect humans as well and has become a significant public health problem in Southeast Asia. This species should therefore be targeted in vaccine and therapeutic strategies against human malaria. Apical Membrane Antigen 1 (AMA1), which plays a role in Plasmodium merozoite invasion of the erythrocyte, is currently being pursued in human vaccine trials against P. falciparum. Recent vaccine trials in macaques using the P. knowlesi orthologue PkAMA1 have shown that it protects against infection by this parasite species and thus should be developed for human vaccination as well. Here, we present the crystal structure of Domains 1 and 2 of the PkAMA1 ectodomain, and of its complex with the invasion-inhibitory monoclonal antibody R31C2. The Domain 2 (D2) loop, which is displaced upon binding the Rhoptry Neck Protein 2 (RON2) receptor, makes significant contacts with the antibody. R31C2 inhibits binding of the Rhoptry Neck Protein 2 (RON2) receptor by steric blocking of the hydrophobic groove and by preventing the displacement of the D2 loop which is essential for exposing the complete binding site on AMA1. R31C2 recognizes a non-polymorphic epitope and should thus be cross-strain reactive. PkAMA1 is much less polymorphic than the P. falciparum and P. vivax orthologues. Unlike these two latter species, there are no polymorphic sites close to the RON2-binding site of PkAMA1, suggesting that P. knowlesi has not developed a mechanism of immune escape from the host's humoral response to AMA1.
    Matched MeSH terms: Protozoan Proteins/chemistry*
  6. Li LC, Mun YF
    Trop Biomed, 2005 Dec;22(2):115-22.
    PMID: 16883276
    The present study aims to explore the possible mechanisms underlying the multidrug resistance characteristic of Cryptosporidium parvum by detecting the presence of ATP-binding cassette (ABC) protein encoding genes, especially one that shows high similarity to members belonging to the multidrug resistance protein (MDR) and multidrug resistance associated protein (MRP) subfamilies. PCR using ABC-specific degenerate primers successfully amplified two unique fragments, designated Cpnbd1 and Cpnbd2, from C. parvum genomic DNA. Cpnbd1 exhibited high degree of homology (99-100%) with the nucleotide- binding domains (NBDs) at the NH2 -terminal halves of two previously reported ABC proteins (CpABC and CpABC1) of human and bovine origin C. parvum isolates. It is likely that CpABC, CpABC1 and Cpnbd1 were encoded by homologous genes of a type of ABC transporter protein found in different C. parvum isolates. However, Cpnbd2 showed moderate levels of similarities (28-49%) to the NBDs of four ABC proteins characterised in C. parvum to date. Therefore, Cpnbd2 could be a novel member of an ABC superfamily of proteins in C. parvum. Phylogenetic analyses on a list of ABC transporters known to associate with MDR phenotype has significantly linked Cpnbd1 and Cpnbd2 to these transporters, thus suggesting that Cpnbd1 and Cpnbd2 proteins may contribute to the intrinsic multidrug resistance phenotype of C. parvum.
    Matched MeSH terms: Protozoan Proteins/chemistry
  7. Ramly NZ, Dix SR, Ruzheinikov SN, Sedelnikova SE, Baker PJ, Chow YP, et al.
    Commun Biol, 2021 03 19;4(1):376.
    PMID: 33742128 DOI: 10.1038/s42003-021-01904-w
    In infections by apicomplexan parasites including Plasmodium, Toxoplasma gondii, and Eimeria, host interactions are mediated by proteins including families of membrane-anchored cysteine-rich surface antigens (SAGs) and SAG-related sequences (SRS). Eimeria tenella causes caecal coccidiosis in chickens and has a SAG family with over 80 members making up 1% of the proteome. We have solved the structure of a representative E. tenella SAG, EtSAG19, revealing that, despite a low level of sequence similarity, the entire Eimeria SAG family is unified by its three-layer αβα fold which is related to that of the CAP superfamily. Furthermore, sequence comparisons show that the Eimeria SAG fold is conserved in surface antigens of the human coccidial parasite Cyclospora cayetanensis but this fold is unrelated to that of the SAGs/SRS proteins expressed in other apicomplexans including Plasmodium species and the cyst-forming coccidia Toxoplasma gondii, Neospora caninum and Besnoitia besnoiti. However, despite having very different structures, Consurf analysis showed that Eimeria SAG and Toxoplasma SRS families each exhibit marked hotspots of sequence hypervariability that map to their surfaces distal to the membrane anchor. This suggests that the primary and convergent purpose of the different structures is to provide a platform onto which sequence variability can be imposed.
    Matched MeSH terms: Protozoan Proteins/chemistry
  8. Phang WK, Bukhari FDM, Zen LPY, Jaimin JJ, Dony JJF, Lau YL
    Parasitol Int, 2022 Apr;87:102519.
    PMID: 34800724 DOI: 10.1016/j.parint.2021.102519
    Information about Plasmodium malariae is scanty worldwide due to its "benign" nature and low infection rates. Consequently, studies on the genetic polymorphisms of P. malariae are lacking. Here, we report genetic polymorphisms of 28 P. malariae circumsporozoite protein (Pmcsp) isolates from Malaysia which were compared with those in other regions in Asia as well as those from Africa. Phylogenetic analysis revealed that most Malaysian P. malariae isolates clustered together but independently from other Asian isolates. Low nucleotide diversity was observed in Pmcsp non-repeat regions in contrast to high nucleotide diversity observed in non-repeat regions of Plasmodium knowlesi CSP gene, the current major cause of malaria in Malaysia. This study contributes to the characterisation of naturally occurring polymorphisms in the P. malariae CSP gene.
    Matched MeSH terms: Protozoan Proteins/chemistry
  9. Goh MY, Pan MZ, Blake DP, Wan KL, Song BK
    Parasitol Res, 2011 Mar;108(3):611-20.
    PMID: 20938684 DOI: 10.1007/s00436-010-2104-7
    Phosphatidylinositol 4-phosphate 5-kinase (PIP5K) may play an important role in host-cell invasion by the Eimeria species, protozoan parasites which can cause severe intestinal disease in livestock. Here, we report the structural organization of the PIP5K gene in Eimeria maxima (Weybridge strain). Two E. maxima BAC clones carrying the E. maxima PIP5K (EmPIP5K) coding sequences were selected for shotgun sequencing, yielding a 9.1-kb genomic segment. The EmPIP5K coding region was initially identified using in silico gene-prediction approaches and subsequently confirmed by mapping rapid amplification of cDNA ends and RT-PCR-generated cDNA sequence to its genomic segment. The putative EmPIP5K gene was located at position 710-8036 nt on the complimentary strand and comprised of 23 exons. Alignment of the 1147 amino acid sequence with previously annotated PIP5K proteins from other Apicomplexa species detected three conserved motifs encompassing the kinase core domain, which has been shown by previous protein deletion studies to be necessary for PIP5K protein function. Phylogenetic analysis provided further evidence that the putative EmPIP5K protein is orthologous to that of other Apicomplexa. Subsequent comparative gene structure characterization revealed events of intron loss/gain throughout the evolution of the apicomplexan PIP5K gene. Further scrutiny of the genomic structure revealed a possible trend towards "intron gain" between two of the motif regions. Our findings offer preliminary insights into the structural variations that have occurred during the evolution of the PIP5K locus and may aid in understanding the functional role of this gene in the cellular biology of apicomplexan parasites.
    Matched MeSH terms: Protozoan Proteins/chemistry
  10. Tommy YB, Lim TS, Noordin R, Saadatnia G, Choong YS
    BMC Struct Biol, 2012 Nov 27;12:30.
    PMID: 23181504 DOI: 10.1186/1472-6807-12-30
    BACKGROUND: Toxoplasma gondii is an intracellular coccidian parasite that causes toxoplasmosis. It was estimated that more than one third of the world population is infected by T. gondii, and the disease is critical in fetuses and immunosuppressed patients. Thus, early detection is crucial for disease diagnosis and therapy. However, the current available toxoplasmosis diagnostic tests vary in their accuracy and the better ones are costly.

    RESULTS: An earlier published work discovered a highly antigenic 12 kDa excretory-secretory (ES) protein of T. gondii which may potentially be used for the development of an antigen detection test for toxoplasmosis. However, the three-dimensional structure of the protein is unknown. Since epitope identification is important prior to designing of a specific antibody for an antigen-detection based diagnostic test, the structural elucidation of this protein is essential. In this study, we constructed a three dimensional model of the 12 kDa ES protein. The built structure possesses a thioredoxin backbone which consists of four α-helices flanking five β-strands at the center. Three potential epitopes (6-8 residues) which can be combined into one "single" epitope have been identified from the built structure as the most potential antibody binding site.

    CONCLUSION: Together with specific antibody design, this work could contribute towards future development of an antigen detection test for toxoplasmosis.

    Matched MeSH terms: Protozoan Proteins/chemistry*
  11. Han JH, Cho JS, Ong JJY, Park JH, Nyunt MH, Sutanto E, et al.
    PLoS Negl Trop Dis, 2020 Jul;14(7):e0008202.
    PMID: 32645098 DOI: 10.1371/journal.pntd.0008202
    Plasmodium vivax is the most widespread and difficult to treat cause of human malaria. The development of vaccines against the blood stages of P. vivax remains a key objective for the control and elimination of vivax malaria. Erythrocyte binding-like (EBL) protein family members such as Duffy binding protein (PvDBP) are of critical importance to erythrocyte invasion and have been the major target for vivax malaria vaccine development. In this study, we focus on another member of EBL protein family, P. vivax erythrocyte binding protein (PvEBP). PvEBP was first identified in Cambodian (C127) field isolates and has subsequently been showed its preferences for binding reticulocytes which is directly inhibited by antibodies. We analysed PvEBP sequence from 316 vivax clinical isolates from eight countries including China (n = 4), Ethiopia (n = 24), Malaysia (n = 53), Myanmar (n = 10), Papua New Guinea (n = 16), Republic of Korea (n = 10), Thailand (n = 174), and Vietnam (n = 25). PvEBP gene exhibited four different phenotypic clusters based on the insertion/deletion (indels) variation. PvEBP-RII (179-479 aa.) showed highest polymorphism similar to other EBL family proteins in various Plasmodium species. Whereas even though PvEBP-RIII-V (480-690 aa.) was the most conserved domain, that showed strong neutral selection pressure for gene purifying with significant population expansion. Antigenicity of both of PvEBP-RII (16.1%) and PvEBP-RIII-V (21.5%) domains were comparatively lower than other P. vivax antigen which expected antigens associated with merozoite invasion. Total IgG recognition level of PvEBP-RII was stronger than PvEBP-RIII-V domain, whereas total IgG inducing level was stronger in PvEBP-RIII-V domain. These results suggest that PvEBP-RII is mainly recognized by natural IgG for innate protection, whereas PvEBP-RIII-V stimulates IgG production activity by B-cell for acquired immunity. Overall, the low antigenicity of both regions in patients with vivax malaria likely reflects genetic polymorphism for strong positive selection in PvEBP-RII and purifying selection in PvEBP-RIII-V domain. These observations pose challenging questions to the selection of EBP and point out the importance of immune pressure and polymorphism required for inclusion of PvEBP as a vaccine candidate.
    Matched MeSH terms: Protozoan Proteins/chemistry
  12. Kosuwin R, Putaporntip C, Tachibana H, Jongwutiwes S
    PLoS One, 2014;9(10):e110463.
    PMID: 25333779 DOI: 10.1371/journal.pone.0110463
    Thrombospondin-related adhesive protein (TRAP) of malaria parasites is essential for sporozoite motility and invasions into mosquito's salivary gland and vertebrate's hepatocyte; thereby, it is a promising target for pre-erythrocytic vaccine. TRAP of Plasmodium vivax (PvTRAP) exhibits sequence heterogeneity among isolates, an issue relevant to vaccine development. To gain insights into variation in the complete PvTRAP sequences of parasites in Thailand, 114 vivax malaria patients were recruited in 2006-2007 from 4 major endemic provinces bordering Myanmar (Tak in the northwest, n = 30 and Prachuap Khirikhan in the southwest, n = 25), Cambodia (Chanthaburi in the east, n = 29) and Malaysia (Yala and Narathiwat in the south, n = 30). In total, 26 amino acid substitutions were detected and 9 of which were novel, resulting in 44 distinct haplotypes. Haplotype and nucleotide diversities were lowest in southern P. vivax population while higher levels of diversities were observed in other populations. Evidences of positive selection on PvTRAP were demonstrated in domains II and IV and purifying selection in domains I, II and VI. Genetic differentiation was significant between each population except that between populations bordering Myanmar where transmigration was common. Regression analysis of pairwise linearized Fst and geographic distance suggests that P. vivax populations in Thailand have been isolated by distance. Sequence diversity of PvTRAP seems to be temporally stable over one decade in Tak province based on comparison of isolates collected in 1996 (n = 36) and 2006-2007. Besides natural selection, evidences of intragenic recombination have been supported in this study that could maintain and further generate diversity in this locus. It remains to be investigated whether amino acid substitutions in PvTRAP could influence host immune responses although several predicted variant T cell epitopes drastically altered the epitope scores. Knowledge on geographic diversity in PvTRAP constitutes an important basis for vaccine design provided that vaccination largely confers variant-specific immunity.
    Matched MeSH terms: Protozoan Proteins/chemistry
  13. Suwito H, Jumina, Mustofa, Pudjiastuti P, Fanani MZ, Kimata-Ariga Y, et al.
    Molecules, 2014 Dec 19;19(12):21473-88.
    PMID: 25532844 DOI: 10.3390/molecules191221473
    Some chalcones have been designed and synthesized using Claisen-Schmidt reactions as inhibitors of the ferredoxin and ferredoxin-NADP+ reductase interaction to pursue a new selective antimalaria agent. The synthesized compounds exhibited inhibition interactions between PfFd-PfFNR in the range of 10.94%-50%. The three strongest inhibition activities were shown by (E)-1-(4-aminophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (50%), (E)-1-(4-aminophenyl)-3-(2,4-dimethoxyphenyl)prop-2-en-1-one (38.16%), and (E)-1-(4-aminophenyl)-3-(2,3-dimethoxyphenyl)prop-2-en-1-one (31.58%). From the docking experiments we established that the amino group of the methoxyamino chlacone derivatives plays an important role in the inhibition activity by electrostatic interaction through salt bridges and that it forms more stable and better affinity complexes with FNR than with Fd.
    Matched MeSH terms: Protozoan Proteins/chemistry
  14. Chong SP, Jangi MS, Wan KL
    J. Biochem. Mol. Biol. Biophys., 2002 Apr;6(2):123-8.
    PMID: 12186768
    VCP (Valosin-Containing Protein), a member of the AAA (ATPases Associated to a variety of cellular Activities) family of proteins, possesses a duplicated highly conserved ATPase domain. An expressed sequence tag (EST), representing a clone from the Eimeria tenella merozoite cDNA library, was found to have high similarity to VCP genes from other organisms. A complete sequence derived from the corresponding clone (designated eth060) shows amino acid identity of 42-62% with other members of the VCP subfamily. Sequence analysis identified a putative ATPase domain in the eth060 sequence. This domain was PCR-amplified using gene-specific primers and cloned into a pBAD/Thio-TOPO expression vector. Expression in Escherichia coli demonstrated that the putative ATPase domain, which consists of 414 amino acid residues, produced a fusion protein of approximately 60 kDa in size.
    Matched MeSH terms: Protozoan Proteins/chemistry
  15. Lau YL, Hasan MT, Thiruvengadam G, Idris MM, Init I
    Trop Biomed, 2010 Dec;27(3):525-33.
    PMID: 21399595
    GRA4 of Toxoplasma gondii has been shown to prompt IgG, IgM and IgA responses in previous studies and is thus considered one of the major immunogenic proteins from T. gondii that can be used for both diagnostics purposes and vaccine development. This study seeks to clone and express the GRA4 in Pichia pastoris, which has numerous advantages over other systems for expression of eukaryotic proteins. In order to achieve this, the gene was cloned into the pPICZα A expression vector, which was then incorporated into the P. pastoris genome via insertional integration for expression of the recombinant protein, under the AOX1 promoter. The antigen was expressed along with the prepro sequence of the α-factor of yeast so that it could be excreted out of the P. pastoris cells and obtained from the medium. Upon SDS-PAGE analysis it was found that the recombinant protein was expressed optimally as a 40 kDa protein after 96 hours of induction with 0.75% of methanol. The expressed GRA4 protein showed discrepancy in size with the calculated molecular mass. This may be attributed to the various posttranslational modifications including glycosylation and phosphorylation. Despite the difference in molecular weight, the recombinant protein was able to detect toxoplasmosis in Western blot format. The recombinant GRA4 was expressed with an intact polyhistidine-tag, which could be used for future purification of the antigen.
    Matched MeSH terms: Protozoan Proteins/chemistry
  16. Baig AM, Khan NA, Katyara P, Lalani S, Baig R, Nadeem M, et al.
    Chem Biol Drug Des, 2021 01;97(1):18-27.
    PMID: 32602961 DOI: 10.1111/cbdd.13755
    Acanthamoeba spp. cause a corneal infection, Acanthamoeba keratitis (AK), and a cerebral infection, granulomatous amoebic encephalitis (GAE). Though aggressive chemotherapy has been able to kill the active trophozoite form of Acanthamoeba, the encysted form of this parasite has remained problematic to resist physiological concentrations of drugs. The emergence of encysted amoeba into active trophozoite form poses a challenge to eradicate this parasite. Acanthamoeba trophozoites have active metabolic machinery that furnishes energy in the form of ATPs by subjecting carbohydrates and lipids to undergo pathways including glycolysis and beta-oxidation of free fatty acids, respectively. However, very little is known about the metabolic preferences and dependencies of an encysted trophozoite on minerals or potential nutrients that it consumes to live in an encysted state. Here, we investigate the metabolic and nutrient preferences of the encysted trophozoite of Acanthamoeba castellanii and the possibility to target them by drugs that act on calcium ion dependencies of the encysted amoeba. The experimental assays, immunostaining coupled with bioinformatics tools show that the encysted Acanthamoeba uses diverse nutrient pathways to obtain energy in the quiescent encysted state. These findings highlight potential pathways that can be targeted in eradicating amoebae cysts successfully.
    Matched MeSH terms: Protozoan Proteins/chemistry
  17. De Silva JR, Lau YL, Fong MY
    PLoS One, 2016;11(7):e0158998.
    PMID: 27391270 DOI: 10.1371/journal.pone.0158998
    Malaria remains a major health threat in many parts of the globe and causes high mortality and morbidity with 214 million cases of malaria occurring globally in 2015. Recent studies have outlined potential diagnostic markers and vaccine candidates one of which is the merozoite surface protein (MSP)-3. In this study, novel recombinant Plasmodium knowlesi MSP-3 was cloned, expressed and purified in an Escherichia coli system. Subsequently, the recombinant protein was evaluated for its sensitivity and specificity. The recombinant pkMSP-3 protein reacted with sera from patients with P. knowlesi infection in both Western blot (61%) and ELISA (100%). Specificity-wise, pkMSP-3 did not react with healthy donor sera in either assay and only reacted with a few non-malarial parasitic patient sera in the ELISA assay (3 of 49). In conclusion, sensitivity and specificity of pkMSP-3 was found to be high in the ELISA and Western Blot assay and thus utilising both assays in tandem would provide the best sero-diagnostic result for P. knowlesi infection.
    Matched MeSH terms: Protozoan Proteins/chemistry
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links