Displaying publications 1 - 20 of 43 in total

Abstract:
Sort:
  1. Mohamed Shakeel P, Baskar S, Sarma Dhulipala VR, Mishra S, Jaber MM
    J Med Syst, 2018 Aug 31;42(10):186.
    PMID: 30171378 DOI: 10.1007/s10916-018-1045-z
    In the recent past, Internet of Things (IoT) plays a significant role in different applications such as health care, industrial sector, defense and research etc.… It provides effective framework in maintaining the security, privacy and reliability of the information in internet environment. Among various applications as mentioned health care place a major role, because security, privacy and reliability of the medical information is maintained in an effective way. Even though, IoT provides the effective protocols for maintaining the information, several intermediate attacks and intruders trying to access the health information which in turn reduce the privacy, security and reliability of the entire health care system in internet environment. As a result and to solve the issues, in this research Learning based Deep-Q-Networks has been introduced for reducing the malware attacks while managing the health information. This method examines the medical information in different layers according to the Q-learning concept which helps to minimize the intermediate attacks with less complexity. The efficiency of the system has been evaluated with the help of experimental results and discussions.
    Matched MeSH terms: Privacy*
  2. Nassiri Abrishamchi MA, Zainal A, Ghaleb FA, Qasem SN, Albarrak AM
    Sensors (Basel), 2022 Nov 07;22(21).
    PMID: 36366261 DOI: 10.3390/s22218564
    Smart home technologies have attracted more users in recent years due to significant advancements in their underlying enabler components, such as sensors, actuators, and processors, which are spreading in various domains and have become more affordable. However, these IoT-based solutions are prone to data leakage; this privacy issue has motivated researchers to seek a secure solution to overcome this challenge. In this regard, wireless signal eavesdropping is one of the most severe threats that enables attackers to obtain residents' sensitive information. Even if the system encrypts all communications, some cyber attacks can still steal information by interpreting the contextual data related to the transmitted signals. For example, a "fingerprint and timing-based snooping (FATS)" attack is a side-channel attack (SCA) developed to infer in-home activities passively from a remote location near the targeted house. An SCA is a sort of cyber attack that extracts valuable information from smart systems without accessing the content of data packets. This paper reviews the SCAs associated with cyber-physical systems, focusing on the proposed solutions to protect the privacy of smart homes against FATS attacks in detail. Moreover, this work clarifies shortcomings and future opportunities by analyzing the existing gaps in the reviewed methods.
    Matched MeSH terms: Privacy*
  3. Almazroi AA, Alqarni MA, Al-Shareeda MA, Manickam S
    PLoS One, 2023;18(10):e0292690.
    PMID: 37889892 DOI: 10.1371/journal.pone.0292690
    The role that vehicular fog computing based on the Fifth Generation (5G) can play in improving traffic management and motorist safety is growing quickly. The use of wireless technology within a vehicle raises issues of confidentiality and safety. Such concerns are optimal targets for conditional privacy-preserving authentication (CPPA) methods. However, current CPPA-based systems face a challenge when subjected to attacks from quantum computers. Because of the need for security and anti-piracy features in fog computing when using a 5G-enabled vehicle system, the L-CPPA scheme is proposed in this article. Using a fog server, secret keys are generated and transmitted to each registered car via a 5G-Base Station (5G-BS) in the proposed L-CPPA system. In the proposed L-CPPA method, the trusted authority, rather than the vehicle's Onboard Unit (OBU), stores the vehicle's master secret data to each fog server. Finally, the computation cost of the suggested L-CPPA system regards message signing, single verification and batch verification is 694.161 ms, 60.118 ms, and 1348.218 ms, respectively. Meanwhile, the communication cost is 7757 bytes.
    Matched MeSH terms: Privacy*
  4. Jafar U, Aziz MJA, Shukur Z
    Sensors (Basel), 2021 Aug 31;21(17).
    PMID: 34502764 DOI: 10.3390/s21175874
    Online voting is a trend that is gaining momentum in modern society. It has great potential to decrease organizational costs and increase voter turnout. It eliminates the need to print ballot papers or open polling stations-voters can vote from wherever there is an Internet connection. Despite these benefits, online voting solutions are viewed with a great deal of caution because they introduce new threats. A single vulnerability can lead to large-scale manipulations of votes. Electronic voting systems must be legitimate, accurate, safe, and convenient when used for elections. Nonetheless, adoption may be limited by potential problems associated with electronic voting systems. Blockchain technology came into the ground to overcome these issues and offers decentralized nodes for electronic voting and is used to produce electronic voting systems mainly because of their end-to-end verification advantages. This technology is a beautiful replacement for traditional electronic voting solutions with distributed, non-repudiation, and security protection characteristics. The following article gives an overview of electronic voting systems based on blockchain technology. The main goal of this analysis was to examine the current status of blockchain-based voting research and online voting systems and any related difficulties to predict future developments. This study provides a conceptual description of the intended blockchain-based electronic voting application and an introduction to the fundamental structure and characteristics of the blockchain in connection to electronic voting. As a consequence of this study, it was discovered that blockchain systems may help solve some of the issues that now plague election systems. On the other hand, the most often mentioned issues in blockchain applications are privacy protection and transaction speed. For a sustainable blockchain-based electronic voting system, the security of remote participation must be viable, and for scalability, transaction speed must be addressed. Due to these concerns, it was determined that the existing frameworks need to be improved to be utilized in voting systems.
    Matched MeSH terms: Privacy
  5. Rupa C, Midhunchakkaravarthy D, Hasan MK, Alhumyani H, Saeed RA
    Math Biosci Eng, 2021 08 23;18(5):7010-7027.
    PMID: 34517569 DOI: 10.3934/mbe.2021349
    The use of advanced technologies has increased drastically to maintain any sensitive records related to education, health, or finance. It helps to protect the data from unauthorized access by attackers. However, all the existing advanced technologies face some issues because of their uncertainties. These technologies have some lapses to provide privacy, attack-free, transparency, reliability, and flexibility. These characteristics are essential while managing any sensitive data like educational certificates or medical certificates. Hence, we designed an Industry 5.0 based blockchain application to manage medical certificates using Remix Ethereum blockchain in this paper. This application also employs a distributed application (DApp) that uses a test RPC-based Ethereum blockchain and user expert system as a knowledge agent. The main strength of this work is the maintenance of existing certificates over a blockchain with the creation of new certificates that use logistic Map encryption cipher on existing medical certificates while uploading into the blockchain. This application helps to quickly analyze the birth, death, and sick rate as per certain features like location and year.
    Matched MeSH terms: Privacy
  6. Khan AS, Balan K, Javed Y, Tarmizi S, Abdullah J
    Sensors (Basel), 2019 Nov 14;19(22).
    PMID: 31739437 DOI: 10.3390/s19224954
    Vehicular ad hoc networks (VANET) are also known as intelligent transportation systems. VANET ensures timely and accurate communications between vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) to improve road safety and enhance the efficiency of traffic flow. Due to its open wireless boundary and high mobility, VANET is vulnerable to malicious nodes that could gain access into the network and carry out serious medium access control (MAC) layer threats, such as denial of service (DoS) attacks, data modification attacks, impersonation attacks, Sybil attacks, and replay attacks. This could affect the network security and privacy, causing harm to the information exchange within the network by genuine nodes and increase fatal impacts on the road. Therefore, a novel secure trust-based architecture that utilizes blockchain technology has been proposed to increase security and privacy to mitigate the aforementioned MAC layer attacks. A series of experiment has been conducted using the Veins simulation tool to assess the performance of the proposed solution in the terms of packet delivery ratio (PDR), end-to-end delay, packet loss, transmission overhead, and computational cost.
    Matched MeSH terms: Privacy
  7. Tan SF, Samsudin A
    Sensors (Basel), 2021 Oct 06;21(19).
    PMID: 34640967 DOI: 10.3390/s21196647
    The inherent complexities of Industrial Internet of Things (IIoT) architecture make its security and privacy issues becoming critically challenging. Numerous surveys have been published to review IoT security issues and challenges. The studies gave a general overview of IIoT security threats or a detailed analysis that explicitly focuses on specific technologies. However, recent studies fail to analyze the gap between security requirements of these technologies and their deployed countermeasure in the industry recently. Whether recent industry countermeasure is still adequate to address the security challenges of IIoT environment are questionable. This article presents a comprehensive survey of IIoT security and provides insight into today's industry countermeasure, current research proposals and ongoing challenges. We classify IIoT technologies into the four-layer security architecture, examine the deployed countermeasure based on CIA+ security requirements, report the deficiencies of today's countermeasure, and highlight the remaining open issues and challenges. As no single solution can fix the entire IIoT ecosystem, IIoT security architecture with a higher abstraction level using the bottom-up approach is needed. Moving towards a data-centric approach that assures data protection whenever and wherever it goes could potentially solve the challenges of industry deployment.
    Matched MeSH terms: Privacy
  8. Schröder M, Muller SHA, Vradi E, Mielke J, Lim YMF, Couvelard F, et al.
    Big Data, 2023 Dec;11(6):399-407.
    PMID: 37889577 DOI: 10.1089/big.2022.0178
    Sharing individual patient data (IPD) is a simple concept but complex to achieve due to data privacy and data security concerns, underdeveloped guidelines, and legal barriers. Sharing IPD is additionally difficult in big data-driven collaborations such as Bigdata@Heart in the Innovative Medicines Initiative, due to competing interests between diverse consortium members. One project within BigData@Heart, case study 1, needed to pool data from seven heterogeneous data sets: five randomized controlled trials from three different industry partners, and two disease registries. Sharing IPD was not considered feasible due to legal requirements and the sensitive medical nature of these data. In addition, harmonizing the data sets for a federated data analysis was difficult due to capacity constraints and the heterogeneity of the data sets. An alternative option was to share summary statistics through contingency tables. Here it is demonstrated that this method along with anonymization methods to ensure patient anonymity had minimal loss of information. Although sharing IPD should continue to be encouraged and strived for, our approach achieved a good balance between data transparency while protecting patient privacy. It also allowed a successful collaboration between industry and academia.
    Matched MeSH terms: Privacy
  9. Alnajrani HM, Norman AA, Ahmed BH
    PLoS One, 2020;15(6):e0234312.
    PMID: 32525944 DOI: 10.1371/journal.pone.0234312
    As a result of a shift in the world of technology, the combination of ubiquitous mobile networks and cloud computing produced the mobile cloud computing (MCC) domain. As a consequence of a major concern of cloud users, privacy and data protection are getting substantial attention in the field. Currently, a considerable number of papers have been published on MCC with a growing interest in privacy and data protection. Along with this advance in MCC, however, no specific investigation highlights the results of the existing studies in privacy and data protection. In addition, there are no particular exploration highlights trends and open issues in the domain. Accordingly, the objective of this paper is to highlight the results of existing primary studies published in privacy and data protection in MCC to identify current trends and open issues. In this investigation, a systematic mapping study was conducted with a set of six research questions. A total of 1711 studies published from 2009 to 2019 were obtained. Following a filtering process, a collection of 74 primary studies were selected. As a result, the present data privacy threats, attacks, and solutions were identified. Also, the ongoing trends of data privacy exercise were observed. Moreover, the most utilized measures, research type, and contribution type facets were emphasized. Additionally, the current open research issues in privacy and data protection in MCC were highlighted. Furthermore, the results demonstrate the current state-of-the-art of privacy and data protection in MCC, and the conclusion will help to identify research trends and open issues in MCC for researchers and offer useful information in MCC for practitioners.
    Matched MeSH terms: Privacy*
  10. Gupta R, Kanungo P, Dagdee N, Madhu G, Sahoo KS, Jhanjhi NZ, et al.
    Sensors (Basel), 2023 Feb 27;23(5).
    PMID: 36904822 DOI: 10.3390/s23052617
    With continuous advancements in Internet technology and the increased use of cryptographic techniques, the cloud has become the obvious choice for data sharing. Generally, the data are outsourced to cloud storage servers in encrypted form. Access control methods can be used on encrypted outsourced data to facilitate and regulate access. Multi-authority attribute-based encryption is a propitious technique to control who can access encrypted data in inter-domain applications such as sharing data between organizations, sharing data in healthcare, etc. The data owner may require the flexibility to share the data with known and unknown users. The known or closed-domain users may be internal employees of the organization, and unknown or open-domain users may be outside agencies, third-party users, etc. In the case of closed-domain users, the data owner becomes the key issuing authority, and in the case of open-domain users, various established attribute authorities perform the task of key issuance. Privacy preservation is also a crucial requirement in cloud-based data-sharing systems. This work proposes the SP-MAACS scheme, a secure and privacy-preserving multi-authority access control system for cloud-based healthcare data sharing. Both open and closed domain users are considered, and policy privacy is ensured by only disclosing the names of policy attributes. The values of the attributes are kept hidden. Characteristic comparison with similar existing schemes shows that our scheme simultaneously provides features such as multi-authority setting, expressive and flexible access policy structure, privacy preservation, and scalability. The performance analysis carried out by us shows that the decryption cost is reasonable enough. Furthermore, the scheme is demonstrated to be adaptively secure under the standard model.
    Matched MeSH terms: Privacy*
  11. Nur Azien Yazid, Kamilah Abdullah, Suhaila Abd Halim
    ESTEEM Academic Journal, 2019;15(1):44-55.
    MyJurnal
    Image watermarking embeds identifying information in an image in such a manner that it cannot easily be removed. For the past several years, image digital watermarking has become a necessary element used for hiding secret image and enabling secured communication such as
    privacy, confidentiality, authentication and data integrity. Although numerous watermarking schemes are present in grayscale images, the present work focuses on the RGB color image. This study proposed a new hybrid method that would satisfy the essential needs of modern image watermarking. The color image watermarking is based on the 2D Discrete Cosine Transform and Elgamal cryptosystem. The 2D Discrete Cosine Transform depends on the matrix products, while the Elgamal cryptosystem depends on the discrete logarithm problem. The cryptosystem is combined with existing Arnold transform in watermarking algorithm to enhance the security of secret image. Value of Peak Signal to Noise Ratio was taken as performance evaluation parameters. On the whole, the performance evaluation shows that combining the two algorithms improved the performance of image watermarking.
    Matched MeSH terms: Privacy
  12. Honar Pajooh H, Rashid M, Alam F, Demidenko S
    Sensors (Basel), 2021 Jan 07;21(2).
    PMID: 33430274 DOI: 10.3390/s21020359
    Providing security and privacy to the Internet of Things (IoT) networks while achieving it with minimum performance requirements is an open research challenge. Blockchain technology, as a distributed and decentralized ledger, is a potential solution to tackle the limitations of the current peer-to-peer IoT networks. This paper presents the development of an integrated IoT system implementing the permissioned blockchain Hyperledger Fabric (HLF) to secure the edge computing devices by employing a local authentication process. In addition, the proposed model provides traceability for the data generated by the IoT devices. The presented solution also addresses the IoT systems' scalability challenges, the processing power and storage issues of the IoT edge devices in the blockchain network. A set of built-in queries is leveraged by smart-contracts technology to define the rules and conditions. The paper validates the performance of the proposed model with practical implementation by measuring performance metrics such as transaction throughput and latency, resource consumption, and network use. The results show that the proposed platform with the HLF implementation is promising for the security of resource-constrained IoT devices and is scalable for deployment in various IoT scenarios.
    Matched MeSH terms: Privacy
  13. Kathiravan, Yamunah, Mohd Fahmi Mohamad Amran, Noor Afiza Mat Razali, Mohd Afizi Mohd Shukran, Norshahriah Abdul Wahab, Mohammad Adib Khairuddin, et al.
    MyJurnal
    Privacy has always been a constant concern for many people. Internet users are often worried about the browsing information that is left on their storage media. Web browsers were later introduced with a new feature called private browsing to overcome this issue. The private browsing mode is expected to behave as normal browsing session but without storing any data such as browser cookies, history, cache and passwords on the local machine. Unfortunately, previous researchers concluded web browser often failed to provide the intended privacy protection to their user. Along the way of this reviewing process, the weakness and downside of previous web browser vendors have been identified.
    Matched MeSH terms: Privacy
  14. Chamoso P, González-Briones A, Rivas A, Bueno De Mata F, Corchado JM
    Sensors (Basel), 2018 May 03;18(5).
    PMID: 29751554 DOI: 10.3390/s18051416
    Rapid advances in technology make it necessary to prepare our society in every aspect. Some of the most significant technological developments of the last decade are the UAVs (Unnamed Aerial Vehicles) or drones. UAVs provide a wide range of new possibilities and have become a tool that we now use on a daily basis. However, if their use is not controlled, it could entail several risks, which make it necessary to legislate and monitor UAV flights to ensure, inter alia, the security and privacy of all citizens. As a result of this problem, several laws have been passed which seek to regulate their use; however, no proposals have been made with regards to the control of airspace from a technological point of view. This is exactly what we propose in this article: a platform with different modes designed to control UAVs and monitor their status. The features of the proposed platform provide multiple advantages that make the use of UAVs more secure, such as prohibiting UAVs’ access to restricted areas or avoiding collisions between vehicles. The platform has been successfully tested in Salamanca, Spain.
    Matched MeSH terms: Privacy
  15. Shahid Anwar, Mohamad Fadli Zolkipli, Julius Odili, Mushtaq Ali, Zakira Inayat, Jasni Mohamad Zain
    MyJurnal
    Android devices have gained a lot of attention in the last few decades due to several reasons including ease of use, effectiveness, availability and games, among others. To take advantage of Android devices, mobile users have begun installing an increasingly substantial number of Android applications on their devices. Rapid growth in many Android devices and applications has led to security and privacy issues. It has, for instance, opened the way for malicious applications to be installed on the Android devices while downloading different applications for different purposes. This has caused malicious applications to execute illegal operations on the devices that result in malfunction outputs. Android botnets are one of these malfunctions. This paper presents Android botnets in various aspects including their security, architecture, infection vectors and techniques. This paper also evaluates Android botnets by categorising them according to behaviour. Furthermore, it investigates the Android botnets with respect to Android device threats. Finally, we investigate different Android botnet detection techniques in depth with respect to the existing solutions deployed to mitigate Android botnets.
    Matched MeSH terms: Privacy
  16. Ali A, Al-Rimy BAS, Alsubaei FS, Almazroi AA, Almazroi AA
    Sensors (Basel), 2023 Jul 28;23(15).
    PMID: 37571545 DOI: 10.3390/s23156762
    The swift advancement of the Internet of Things (IoT), coupled with the growing application of healthcare software in this area, has given rise to significant worries about the protection and confidentiality of critical health data. To address these challenges, blockchain technology has emerged as a promising solution, providing decentralized and immutable data storage and transparent transaction records. However, traditional blockchain systems still face limitations in terms of preserving data privacy. This paper proposes a novel approach to enhancing privacy preservation in IoT-based healthcare applications using homomorphic encryption techniques combined with blockchain technology. Homomorphic encryption facilitates the performance of calculations on encrypted data without requiring decryption, thus safeguarding the data's privacy throughout the computational process. The encrypted data can be processed and analyzed by authorized parties without revealing the actual contents, thereby protecting patient privacy. Furthermore, our approach incorporates smart contracts within the blockchain network to enforce access control and to define data-sharing policies. These smart contracts provide fine-grained permission settings, which ensure that only authorized entities can access and utilize the encrypted data. These settings protect the data from being viewed by unauthorized parties. In addition, our system generates an audit record of all data transactions, which improves both accountability and transparency. We have provided a comparative evaluation with the standard models, taking into account factors such as communication expense, transaction volume, and security. The findings of our experiments suggest that our strategy protects the confidentiality of the data while at the same time enabling effective data processing and analysis. In conclusion, the combination of homomorphic encryption and blockchain technology presents a solution that is both resilient and protective of users' privacy for healthcare applications integrated with IoT. This strategy offers a safe and open setting for the management and exchange of sensitive patient medical data, while simultaneously preserving the confidentiality of the patients involved.
    Matched MeSH terms: Privacy
  17. Umi Nadrah Amran, Nur Nadiah Mohd Rais
    MyJurnal
    In medical imaging practice, the act of removing any clothes from the region of interest is justified as to prevent the presence of artefacts on radiographs. However, by doing so, the ‘aurah’ of the patients, especially for the Muslims, are not observed and can be considered as violating their privacy if they are not well-informed beforehand. Previous studies have proved that radiographs with the presence of some fabric materials on the region of interest are radiographically acceptable. Therefore, the aims of this study are to tackle the issue of exposing one’s ‘aurah’ for a knee x-ray examination to take place and also to add insufficiency from the previous studies.
    Matched MeSH terms: Privacy
  18. Esther Omolara A, Jantan A, Abiodun OI, Arshad H, Dada KV, Emmanuel E
    Health Informatics J, 2020 09;26(3):2083-2104.
    PMID: 31957538 DOI: 10.1177/1460458219894479
    Advancements in electronic health record system allow patients to store and selectively share their medical records as needed with doctors. However, privacy concerns represent one of the major threats facing the electronic health record system. For instance, a cybercriminal may use a brute-force attack to authenticate into a patient's account to steal the patient's personal, medical or genetic details. This threat is amplified given that an individual's genetic content is connected to their family, thus leading to security risks for their family members as well. Several cases of patient's data theft have been reported where cybercriminals authenticated into the patient's account, stole the patient's medical data and assumed the identity of the patients. In some cases, the stolen data were used to access the patient's accounts on other platforms and in other cases, to make fraudulent health insurance claims. Several measures have been suggested to address the security issues in electronic health record systems. Nevertheless, we emphasize that current measures proffer security in the short-term. This work studies the feasibility of using a decoy-based system named HoneyDetails in the security of the electronic health record system. HoneyDetails will serve fictitious medical data to the adversary during his hacking attempt to steal the patient's data. However, the adversary will remain oblivious to the deceit due to the realistic structure of the data. Our findings indicate that the proposed system may serve as a potential measure for safeguarding against patient's information theft.
    Matched MeSH terms: Privacy
  19. Noor Hafizah Hassan, Fiza Abdul Rahim
    MyJurnal
    The increasing adoption of social media is a viable means in crowdsourcing. It can facilitate the connectivity of collaboration between different organisations, people and society to produce innovative and cost-effective solutions to many problems. Social media have opened up unprecedented new possibilities of engaging the public in meaningful ways through crowdsourcing. However, the growing number of security and privacy issues in social media may weaken the efficacy of crowdsourcing. This study aims to provide a basic understanding of security and privacy issues in line with the growth of crowdsourcing using social media platforms. This study also illustrates how crowdsourcing and social media data can lead to security and privacy issues in different environments. Lastly, this study proposes future works that may serve as direction for scholars to explore security and privacy in crowdsourcing through social media platforms. Secondary sources obtained from journals, conference papers, industry reports and books were reviewed to gather information.
    Matched MeSH terms: Privacy
  20. Zakaria N, Ramli R
    Neuropsychiatr Dis Treat, 2018;14:117-128.
    PMID: 29343963 DOI: 10.2147/NDT.S115261
    Background: Psychiatric patients have privacy concerns when it comes to technology intervention in the hospital setting. In this paper, we present scenarios for psychiatric behavioral monitoring systems to be placed in psychiatric wards to understand patients' perception regarding privacy. Psychiatric behavioral monitoring refers to systems that are deemed useful in measuring clinical outcomes, but little research has been done on how these systems will impact patients' privacy.

    Methods: We conducted a case study in one teaching hospital in Malaysia. We investigated the physical factors that influence patients' perceived privacy with respect to a psychiatric monitoring system. The eight physical factors identified from the information system development privacy model, a comprehensive model for designing a privacy-sensitive information system, were adapted in this research. Scenario-based interviews were conducted with 25 patients in a psychiatric ward for 3 months.

    Results: Psychiatric patients were able to share how physical factors influence their perception of privacy. Results show how patients responded to each of these dimensions in the context of a psychiatric behavioral monitoring system.

    Conclusion: Some subfactors under physical privacy are modified to reflect the data obtained in the interviews. We were able to capture the different physical factors that influence patient privacy.

    Matched MeSH terms: Privacy
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links