Displaying publications 1 - 20 of 218 in total

Abstract:
Sort:
  1. Colley FC, Rahman MA, Omar IB
    PMID: 5165246
    Matched MeSH terms: Poultry; Poultry Diseases*
  2. GRIFFITHS RB
    Med J Malaysia, 1964 Sep;19:40-1.
    PMID: 14240062
    Matched MeSH terms: Poultry*; Poultry Diseases*
  3. Ugwu CC, Hair-Bejo M, Nurulfiza MI, Omar AR, Aini I
    Open Vet J, 2023 Feb;13(2):171-178.
    PMID: 37073244 DOI: 10.5455/OVJ.2023.v13.i2.4
    BACKGROUND: Fowl adenovirus (FAdV) 8b and other serotypes cause inclusion body hepatitis (IBH) in chickens. Specific detection of aetiologic serotype in mixed infection and vaccine failure could be difficult.

    AIM: The objective of this study was to develop a TaqMan probe-based qPCR method for the detection and quantification of the FAdV 8b challenge virus.

    METHODS: Forty-eight broiler chickens inoculated with live attenuated or inactivated FAdV 8b strains at day 1 of age either with or without booster at day 14 post-inoculation were used. The chickens were challenged with a pathogenic strain of FAdV 8b at day 28 of age. Liver and cloacal swabs were collected on days 7 and 14 post-challenge. Primers and probes were designed, specificity confirmed, and used to carry out qPCR amplification.

    RESULTS: The assay amplified the FAdV DNA challenge virus, but not that of the live attenuated virus. It could detect FAdV 8b DNA as low as 0.001 ng/µl in liver and cloacal swab samples. Copy numbers obtained indicate virus load and shedding.

    CONCLUSIONS: It shows that a selective detection of FAdV 8b within serotype is possible. It can be useful for rapid detection and diagnosis of the disease, virus quantification and differentiation within species, determination of vaccination failure, and efficacy especially the virus load in the target organ and shedding.

    Matched MeSH terms: Poultry Diseases*
  4. Tan DY, Hair Bejo M, Aini I, Omar AR, Goh YM
    Virus Genes, 2004 Jan;28(1):41-53.
    PMID: 14739650
    Base usage and dinucleotide frequency have been extensively studied in many eukaryotic organisms and bacteria, but not for viruses. In this paper, a comprehensive analysis of these aspects for infectious bursal disease virus (IBDV) was presented. The analysis of base usage indicated that all of the IBDV genes possess equivalent overall nucleotide distributions. However when the base usage at each codon positions was analysed by using cluster analysis, the VP5 open reading frame (ORF) formed a different cluster isolated from the other genes. The unusual base usage of VP5 ORF may indicate that the gene was originated by the virus "overprinting strategy", a strategy in which virus may create novel gene by utilizing the unused reading frames of its existing genes. Meanwhile, the GC content of the IBDV genes and the chicken's coding sequences was comparable; suggesting the virus imitation of the host to increase its translational efficiency. The analysis of dinucleotide frequency indicated that IBDV genome had dinucleotide bias: the frequencies of CpG and TpA were lower and the TpG was higher than the expected. Classical methylation pathway, a process where CpG converted to TpG, may explain the significant correlation between the CpG deficiency and TpG abundance. "Principal component analysis of the dinucleotide frequencies" (DF-PCA) was used to analyse the overall dinucleotide frequencies of IBDV genome. DF-PCA on the hypervariable region and polyprotein (VPX-VP4-VP3) gene showed that the very virulent IBDV (vvIBDV) was segregated from other strains; which meant vvIBDV had a unique dinucleotide pattern. In summary, the study of base usage and dinucleotide frequency had unravelled many overlooked genomic properties of the virus.
    Matched MeSH terms: Poultry/virology; Poultry Diseases/virology
  5. Hayat MN, Kumar P, Sazili AQ
    Poult Sci, 2023 Sep;102(9):102838.
    PMID: 37392488 DOI: 10.1016/j.psj.2023.102838
    With the continuous rise of Muslim and Jewish populations and their increasing preference for ritually slaughtered poultry meat, the industry is forced to redefine its existing product-centric quality standard toward a new consumer-centric dimension of quality. The new dimension is mainly attributed to ensuring animal welfare and ethical treatment (ethical quality), spiritual quality (such as halal status, cleanliness), and eating quality standards set by religion. To meet consumer quality requirements while maintaining high production performance, the industry has incorporated newer technologies that are compatible with religious regulations such as stunning methods like electrical water bath stunning. However, the introduction of new techniques such as electrical water bath stunning has been met with mixed reactions. Some religious scholars have banned the use of any stunning methods in religious slaughter, as halal status is believed to be compromised in cases where birds have been stunned to death before slaughter. Nevertheless, some studies have shown the positive side of the electrical water bath stunning procedure in terms of preserving eating, ethical, and spiritual quality. Therefore, the present study aims to critically analyze the application of various aspects of electrical water bath stunning such as current intensity and frequency on various quality attributes, namely, ethical, spiritual, and eating quality of poultry meat.
    Matched MeSH terms: Poultry*
  6. Ugwu CC, Hair-Bejo M, Nurulfiza MI, Omar AR, Ideris A
    Open Vet J, 2024 Feb;14(2):617-629.
    PMID: 38549580 DOI: 10.5455/OVJ.2024.v14.i2.2
    BACKGROUND: Fowl adenovirus (FAdV) 8b causes huge economic losses in the poultry industry worldwide. Attenuated FAdV 8b could be useful in preventing FAdV infections globally and scale-up obstacles could be solved by bioreactor technology.

    AIM: This study was carried out to attenuate the FAdV 8b isolate, propagate it in a bioreactor, molecularly characterize the passage isolates, and determine the immunogenicity, efficacy, and shedding of the virus of chickens.

    METHODS: FAdV serotype 8b (UPM11142) isolate was passaged on chicken embryo liver (CEL) cells until attenuation and propagated in a bioreactor (UPM11142P20B1). Hexon and fiber genes of the isolates were sequenced and analyzed. UPM11142P20B1 was administered to 116-day-old broiler chickens divided into four groups, A (control), B (non-booster), C (booster with UPM11142P20B1), and D (booster with inactivated UPM11142P5B1). Eight chickens from each group were challenged. Body weight (BW) and liver weight (LW), liver: BW ratio (LBR), FAdV antibody titer, T lymphocyte sub-populations in the liver, spleen and thymus; and challenge virus load in the liver and shedding in cloaca were measured at weekly intervals.

    RESULTS: The isolate caused typical cytopathic effects on CEL cells typical of FAdV. Novel molecular changes in the genes occurred which could be markers for FAdV 8b attenuation. BW, LW, and LBR were similar among groups throughout the trial but the uninoculated control-challenged group (UCC) had significantly higher LBR than the inoculated and challenged groups at 35 dpi. Non-booster group had higher FAdV antibodies at all time points than the uninoculated control group (UCG); and the challenged booster groups had higher titer at 35 dpi than UCC. T lymphocytes increased at different time-points in the liver of inoculated chickens, and in the spleen and thymus as well, and was higher in the organs of inoculated challenged groups than the UCC. There was a significantly higher challenge virus load in the liver and cloaca of UCC chickens than in the non-booster chickens.

    CONCLUSION: UPM11142P20B1 was safe, efficacious, significantly reduced shedding, and is recommended as a candidate vaccine in the prevention and control of FAdV 8b infections in broiler chickens.

    Matched MeSH terms: Poultry Diseases*
  7. Palya V, Kovács EW, Marton S, Tatár-Kis T, Felföldi B, Forró B, et al.
    Emerg Infect Dis, 2019 06;25(6):1110-1117.
    PMID: 31107212 DOI: 10.3201/eid2506.181661
    During 2014-2017, we isolated a novel orthobunyavirus from broiler chickens with severe kidney lesions in the state of Kedah, Malaysia; we named the virus Kedah fatal kidney syndrome virus (KFKSV). Affected chickens became listless and diarrheic before dying suddenly. Necropsies detected pale and swollen kidneys with signs of gout, enlarged and fragile livers, and pale hearts. Experimental infection of broiler chickens with KFKSV reproduced the disease and pathologic conditions observed in the field, fulfilling the Koch's postulates. Gene sequencing indicated high nucleotide identities between KFKSV isolates (99%) and moderate nucleotide identities with the orthobunyavirus Umbre virus in the large (78%), medium (77%), and small (86%) genomic segments. KFKSV may be pathogenic for other host species, including humans.
    Matched MeSH terms: Poultry Diseases/diagnosis; Poultry Diseases/history; Poultry Diseases/epidemiology*; Poultry Diseases/virology*
  8. Bande F, Arshad SS, Omar AR, Hair-Bejo M, Mahmuda A, Nair V
    Anim Health Res Rev, 2017 Jun;18(1):70-83.
    PMID: 28776490 DOI: 10.1017/S1466252317000044
    The poultry industry faces challenge amidst global food security crisis. Infectious bronchitis is one of the most important viral infections that cause huge economic loss to the poultry industry worldwide. The causative agent, infectious bronchitis virus (IBV) is an RNA virus with great ability for mutation and recombination; thus, capable of generating new virus strains that are difficult to control. There are many IBV strains found worldwide, including the Massachusetts, 4/91, D274, and QX-like strains that can be grouped under the classic or variant serotypes. Currently, information on the epidemiology, strain diversity, and global distribution of IBV has not been comprehensively reported. This review is an update of current knowledge on the distribution, genetic relationship, and diversity of the IBV strains found worldwide.
    Matched MeSH terms: Poultry Diseases/epidemiology; Poultry Diseases/virology*
  9. Jin BL, Jaal Z
    Trop Biomed, 2009 Aug;26(2):140-8.
    PMID: 19901900 MyJurnal
    Changes in the abundance of the house fly, Musca domestica, was studied for a period of one year in two poultry farms in Penang, Malaysia: one in Balik Pulau, located in Penang island, and the other in Juru, located on mainland Penang. The sampling of house flies were carried out from March 2007 to April 2008 using the Scudder grill, and the correlation with meteorological conditions particularly rainfall, relative humidity and temperature were observed. In Balik Pulau, the fly abundance showed an inverse relationship to relative humidity and total rainfall. However, no significant correlations were found between the abundance of flies and the above mentioned climatic factors. In contrast, the occurrence of flies in Juru showed strong correlation indices with relative humidity (r=0.803, p<0.05) and total rainfall (r=0.731, p<0.05). Temperature had no significant effect on the abundance of flies in both poultry farms due to imperceptible changes in monthly temperature.
    Matched MeSH terms: Poultry*
  10. Jazayeri SD, Poh CL
    Vet Res, 2019 Oct 10;50(1):78.
    PMID: 31601266 DOI: 10.1186/s13567-019-0698-z
    Veterinary vaccines need to have desired characteristics, such as being effective, inexpensive, easy to administer, suitable for mass vaccination and stable under field conditions. DNA vaccines have been proposed as potential solutions for poultry diseases since they are subunit vaccines with no risk of infection or reversion to virulence. DNA vaccines can be utilized for simultaneous immunizations against multiple pathogens and are relatively easy to design and inexpensive to manufacture and store. Administration of DNA vaccines has been shown to stimulate immune responses and provide protection from challenges in different animal models. Although DNA vaccines offer advantages, setbacks including the inability to induce strong immunity, and the fact that they are not currently applicable for mass vaccination impede the use of DNA vaccines in the poultry industry. The use of either biological or physical carriers has been proposed as a solution to overcome the current delivery limitations of DNA vaccines for veterinary applications. This review presents an overview of the recent development of carriers for delivery of veterinary DNA vaccines against avian pathogens.
    Matched MeSH terms: Poultry; Poultry Diseases
  11. Ee, S.C., Saari, N., Abas, F., Ismail, A., Abu Bakar, M.K., Bakar, J.
    MyJurnal
    Malaysia is a surplus poultry producing country with well-established commercial slaughtering and processing plants. Immense quantity of heads, feet, viscera, blood and feathers are usually discarded and not optimally utilized. Chicken heads are rich in protein, and could be a potential source of gelatin. The aim of the present work was therefore to find a simpler, faster, cheaper and greener gelatin extraction technology as compared to current available methods of gelatin extraction from poultry heads. A comparison of three different gelatin extraction methods with alkaline-acid pretreatment (E1), single acid pretreatment (E2) and single alkaline pretreatment (E3) were studied to extract gelatin from chicken heads. E1 and E2 produced gelatins of Type A, while E3 produced gelatin of Type B. High bloom gelatin (>300 g) with
    Matched MeSH terms: Poultry; Poultry Products
  12. Elbestawy AR, Ellakany HF, Abd El-Hamid HS, Gado AR, Geneedy AM, Noreldin AE, et al.
    Avian Dis, 2021 09;65(3):407-413.
    PMID: 34427415 DOI: 10.1637/0005-2086-65.3.407
    Despite the vast Egyptian poultry production, scanty information is available concerning the infection of haemprotozoan parasites as pathogens in commercial broilers. In the present study, we provided the first detection of leucocytozoonosis in five broiler chicken flocks in El-Beheira Egyptian governorate. Despite the low mortality rates in the affected flocks (0.3%-1% as a 5-day mortality), severe postmortem (hemorrhagic spots and scars) and histopathologic lesions appeared in different organs including skeletal muscles, liver, kidney, pancreas, abdominal cavity, and bursa of Fabricius. Evaluation of blood smears revealed gametocytes in erythrocytes and leukocytes. Conventional reverse transcriptase-PCR and partial sequence analysis of mitochondrial cytochrome oxidase b gene detected Leucocytozoon caulleryi. GenBank accession numbers of the five Egyptian L. caulleryi isolates were obtained. The five L. caulleryi were 99.9% identical to each other and 99.14% similar to the L. caulleryi mitochondrial DNA gene of Asian strains from India, Japan, Malaysia, South Korea, Taiwan, and Thailand.
    Matched MeSH terms: Poultry Diseases*
  13. Chooi KF, Chulan U
    Vet Rec, 1985 Mar 30;116(13):354.
    PMID: 4002545
    Matched MeSH terms: Poultry Diseases/pathology*
  14. Sato S
    Rev. - Off. Int. Epizoot., 1996 Dec;15(4):1555-67.
    PMID: 9190025
    Since 1954, avian mycoplasmosis has been considered a significant problem in chicken flocks in Japan and in other Asian countries. In Japan, Mycoplasma gallisepticum (MG) and M. synoviae (MS) infections were confirmed aetiologically in chicken flocks affected with respiratory disease or synovitis in 1962 and 1973, respectively. In other Asian countries, including Indonesia, the People's Republic of China, Korea, Malaysia, the Philippines, Taipei China and Thailand, the occurrence of mycoplasmosis in chicken flocks has been recognised serologically or aetiologically. Adverse atmospheric and environmental conditions, in addition to mixed infections of bacterial or viral origin, play an important role in the spread of MG and MS within chicken flocks or in the induction of clinical respiratory mycoplasmosis. Serological tests are important in determining and monitoring the mycoplasmal infection status of chicken flocks. The establishment of mycoplasma-free breeding stocks is recognised as essential for the control of avian mycoplasmosis. To eliminate the transmission of MG to the egg, treatment of infected breeder flocks or their progeny with anti-mycoplasmal antibiotics was effective in considerably reducing the infection rate but not in entirely eliminating MG infection. The preincubation heat treatment of chicken hatching eggs has proved an effective procedure for establishing MG- and MS-free breeding stocks in Japan. Vaccination against MG infection has been practised successfully in Japan and other countries.
    Matched MeSH terms: Poultry Diseases/diagnosis; Poultry Diseases/epidemiology*; Poultry Diseases/prevention & control
  15. Bello MB, Yusoff K, Ideris A, Hair-Bejo M, Peeters BPH, Omar AR
    Biomed Res Int, 2018;2018:7278459.
    PMID: 30175140 DOI: 10.1155/2018/7278459
    Newcastle disease (ND) is one of the most devastating diseases that considerably cripple the global poultry industry. Because of its enormous socioeconomic importance and potential to rapidly spread to naïve birds in the vicinity, ND is included among the list of avian diseases that must be notified to the OIE immediately upon recognition. Currently, virus isolation followed by its serological or molecular identification is regarded as the gold standard method of ND diagnosis. However, this method is generally slow and requires specialised laboratory with biosafety containment facilities, making it of little relevance under epidemic situations where rapid diagnosis is seriously needed. Thus, molecular based diagnostics have evolved to overcome some of these difficulties, but the extensive genetic diversity of the virus ensures that isolates with mutations at the primer/probe binding sites escape detection using these assays. This diagnostic dilemma leads to the emergence of cutting-edge technologies such as next-generation sequencing (NGS) which have so far proven to be promising in terms of rapid, sensitive, and accurate recognition of virulent Newcastle disease virus (NDV) isolates even in mixed infections. As regards disease control strategies, conventional ND vaccines have stood the test of time by demonstrating track record of protective efficacy in the last 60 years. However, these vaccines are unable to block the replication and shedding of most of the currently circulating phylogenetically divergent virulent NDV isolates. Hence, rationally designed vaccines targeting the prevailing genotypes, the so-called genotype-matched vaccines, are highly needed to overcome these vaccination related challenges. Among the recently evolving technologies for the development of genotype-matched vaccines, reverse genetics-based live attenuated vaccines obviously appeared to be the most promising candidates. In this review, a comprehensive description of the current and emerging trends in the detection, identification, and control of ND in poultry are provided. The strengths and weaknesses of each of those techniques are also emphasised.
    Matched MeSH terms: Poultry; Poultry Diseases/diagnosis*; Poultry Diseases/prevention & control
  16. Bailey ES, Fieldhouse JK, Alarja NA, Chen DD, Kovalik ME, Zemke JN, et al.
    PMID: 32190346 DOI: 10.1186/s40794-020-0105-9
    In 2018, our team collected aerosols samples from five poultry farms in Malaysia. Influenza D virus was detected in 14% of samples. One sample had an 86.3% identity score similar to NCBI accession number MH785020.1. This is the first molecular sequence of influenza D virus detected in Southeast Asia from a bioaerosol sample. Our findings indicate that further study of role of IDV in poultry is necessary.
    Matched MeSH terms: Poultry
  17. Premarathne JMKJK, Satharasinghe DA, Huat JTY, Basri DF, Rukayadi Y, Nakaguchi Y, et al.
    Crit Rev Food Sci Nutr, 2017 Dec 12;57(18):3971-3986.
    PMID: 28001082 DOI: 10.1080/10408398.2016.1266297
    Campylobacter is globally recognized as a major cause of foodborne infection in humans, whilst the development of antimicrobial resistance and the possibility of repelling therapy increase the threat to public health. Poultry is the most frequent source of Campylobacter infection in humans, and southeast Asia is a global leader in poultry production, consumption, and exports. Though three of the world's top 20 most populated countries are located in southeast Asia, the true burden of Campylobacter infection in the region has not been fully elucidated. Based on published data, Campylobacter has been reported in humans, animals, and food commodities in the region. To our knowledge, this study is the first to review the status of human Campylobacter infection in southeast Asia and to discuss future perspectives. Gaining insight into the true burden of the infection and prevalence levels of Campylobacter spp. in the southeast Asian region is essential to ensuring global and regional food safety through facilitating improvements in surveillance systems, food safety regulations, and mitigation strategies.
    Matched MeSH terms: Poultry; Poultry Diseases/prevention & control; Poultry Diseases/transmission
  18. Ganapathy K, Sharma RS
    Vet Rec, 2003 Dec 6;153(23):716-7.
    PMID: 14690078
    Matched MeSH terms: Poultry Diseases/etiology; Poultry Diseases/epidemiology*; Poultry Diseases/pathology
  19. Choi KS, Kye SJ, Kim JY, To TL, Nguyen DT, Lee YJ, et al.
    Trop Anim Health Prod, 2014 Jan;46(1):271-7.
    PMID: 24061688 DOI: 10.1007/s11250-013-0475-3
    Newcastle disease virus (NDV) causes significant economic losses to the poultry industry in Southeast Asia. In the present study, 12 field isolates of NDV were recovered from dead village chickens in Vietnam between 2007 and 2012, and were characterized. All the field isolates were classified as velogenic. Based on the sequence analysis of the F variable region, two distinct genetic groups (Vietnam genetic groups G1 and G2) were recognized. Phylogenetic analysis revealed that all the 12 field isolates fell into the class II genotype VII cluster. Ten of the field isolates, classified as Vietnam genetic group G1, were closely related to VIIh viruses that had been isolated from Indonesia, Malaysia, and Cambodia since the mid-2000s, while the other two field isolates, of Vietnam genetic group G2, clustered with VIId viruses, which were predominantly circulating in China and Far East Asia. Our results indicate that genotype VII viruses, especially VIIh viruses, are predominantly responsible for the recent epizootic of the disease in Vietnam.
    Matched MeSH terms: Poultry/genetics; Poultry Diseases/epidemiology*; Poultry Diseases/virology
  20. Khairul Anuar A, Khamis S
    Med J Malaysia, 1978 Dec;33(2):186-92.
    PMID: 755174
    Matched MeSH terms: Poultry Diseases/parasitology*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links