Displaying all 12 publications

Abstract:
Sort:
  1. Alam MA, Juraimi AS, Rafii MY, Hamid AA, Aslani F
    ScientificWorldJournal, 2014;2014:627916.
    PMID: 25003141 DOI: 10.1155/2014/627916
    Purslane (Portulaca oleracea L.) is an herbaceous leafy vegetable crop, comparatively more salt-tolerant than any other vegetables with high antioxidants, minerals, and vitamins. Salt-tolerant crop variety development is of importance due to inadequate cultivable land and escalating salinity together with population pressure. In this view a total of 25 purslane accessions were initially selected from 45 collected purslane accessions based on better growth performance and subjected to 5 different salinity levels, that is, 0.0, 10.0, 20.0, 30.0, and 40.0 dS m(-1) NaCl. Plant height, number of leaves, number of flowers, and dry matter contents in salt treated purslane accessions were significantly reduced (P ≤ 0.05) and the enormity of reduction increased with increasing salinity stress. Based on dry matter yield reduction, among all 25 purslane accessions 2 accessions were graded as tolerant (Ac7 and Ac9), 6 accessions were moderately tolerant (Ac3, Ac5, Ac6, Ac10, Ac11, and Ac12), 5 accessions were moderately susceptible (Ac1, Ac2, Ac4, Ac8, and Ac13), and the remaining 12 accessions were susceptible to salinity stress and discarded from further study. The selected 13 purslane accessions could assist in the identification of superior genes for salt tolerance in purslane for improving its productivity and sustainable agricultural production.
    Matched MeSH terms: Portulaca/drug effects; Portulaca/genetics*; Portulaca/growth & development
  2. Amirul Alam M, Juraimi AS, Rafii MY, Hamid AA, Kamal Uddin M, Alam MZ, et al.
    Mol Biol Rep, 2014 Nov;41(11):7395-411.
    PMID: 25085039 DOI: 10.1007/s11033-014-3628-1
    Common purslane (Portulaca oleracea), also known as pigweed, fatweed, pusle, and little hogweed, is an annual succulent herb in the family Portulacaceae that is found in most corners of the globe. From the ancient ages purslane has been treated as a major weed of vegetables as well as other crops. However, worldwide researchers and nutritionists have studied this plant as a potential vegetable crop for humans as well as animals. Purslane is a nutritious vegetable with high antioxidant properties and recently has been recognized as the richest source of α-linolenic acid, essential omega-3 and 6 fatty acids, ascorbic acid, glutathione, α-tocopherol and β-carotene. The lack of vegetable sources of ω-3 fatty acids has resulted in a growing level of attention to introduce purslane as a new cultivated vegetable. In the rapid-revolutionizing worldwide atmosphere, the ability to produce improved planting material appropriate to diverse and varying rising conditions is a supreme precedence. Though various published reports on morphological, physiological, nutritional and medicinal aspects of purslane are available, research on the genetic improvement of this promising vegetable crop are scant. Now it is necessary to conduct research for the genetic improvement of this plant. Genetic improvement of purslane is also a real scientific challenge. Scientific modernization of conventional breeding with the advent of advance biotechnological and molecular approaches such as tissue culture, protoplast fusion, genetic transformation, somatic hybridization, marker-assisted selection, qualitative trait locus mapping, genomics, informatics and various statistical representation have opened up new opportunities of revising the relationship between genetic diversity, agronomic performance and response to breeding for varietal improvement. This review is an attempt to amalgamate the assorted scientific information on purslane propagation, cultivation, varietal improvement, nutrient analyses, medicinal uses and to describe prospective research especially for genetic improvement of this crop.
    Matched MeSH terms: Portulaca/genetics*; Portulaca/growth & development*; Portulaca/chemistry
  3. Uddin MK, Juraimi AS, Ali ME, Ismail MR
    Int J Mol Sci, 2012;13(8):10257-67.
    PMID: 22949859 DOI: 10.3390/ijms130810257
    The main objective of this research was to appraise the changes in mineral content and antioxidant attributes of Portulaca oleracea over different growth stages. The antioxidant activity was measured using 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric-reducing antioxidant power (FRAP) assays. The iodine titration method was used to determine the ascorbic acid content (AAC). DPPH scavenging (IC(50)) capacity ranged from 1.30 ± 0.04 to 1.71 ± 0.04 mg/mL, while the ascorbic acid equivalent antioxidant activity (AEAC) values were 229.5 ± 7.9 to 319.3 ± 8.7 mg AA/100 g, total phenol content (TPC) varied from 174.5 ± 8.5 to 348.5 ± 7.9 mg GAE/100 g. AAC 60.5 ± 2.1 to 86.5 ± 3.9 mg/100 g and FRAP 1.8 ± 0.1 to 4.3 ± 0.1 mg GAE/g. There was good correlation between the results of TPC and AEAC, and between IC(50) and FRAP assays (r(2) > 0.9). The concentrations of Ca, Mg, K, Fe and Zn increased with plant maturity. Calcium (Ca) was negatively correlated with sodium (Na) and chloride (Cl), but positively correlated with magnesium (Mg), potassium (K), iron (Fe) and zinc (Zn). Portulaca olerecea cultivars could be used as a source of minerals and antioxidants, especially for functional food and nutraceutical applications.
    Matched MeSH terms: Portulaca/growth & development*; Portulaca/metabolism; Portulaca/chemistry*
  4. Alam MA, Juraimi AS, Rafii MY, Hamid AA, Arolu IW, Abdul Latif M
    C. R. Biol., 2015 Jan;338(1):1-11.
    PMID: 25468001 DOI: 10.1016/j.crvi.2014.10.007
    Genetic diversity and relationships among 45 collected purslane accessions were evaluated using ISSR markers. The 28 primers gave a total of 167 bands, among which 163 were polymorphic (97.6%). The genetic diversity as estimated by Shannon's information index was 0.513, revealing a quite high level of genetic diversity in the germplasm. The average number of observed allele, effective allele, expected heterozygosity, polymorphic information content (PIC) and Nei's index were 5.96, 1.59, 0.43, 0.35 and 0.35, respectively. The UPGMA dendrogram based on Nei's genetic distance grouped the whole germplasm into 7 distinct clusters. The analysis of molecular variance (AMOVA) revealed that 89% of total variation occurred within population, while 11% were found among populations. Based on the constructed dendrogram using ISSR markers those accessions that are far from each other by virtue of genetic origin and diversity index (like Ac1 and Ac42; Ac19 and Ac45; Ac9 and Ac23; Ac18 and A25; Ac24 and Ac18) are strongly recommended to select as parent for future breeding program to develop high yielding and stress tolerant purslane variety in contribution to global food security.
    Matched MeSH terms: Portulaca/genetics*
  5. Amirul Alam M, Juraimi AS, Rafii MY, Hamid AA, Aslani F, Alam MZ
    Food Chem, 2015 Feb 15;169:439-47.
    PMID: 25236249 DOI: 10.1016/j.foodchem.2014.08.019
    Dry matter (DM), total phenolics, flavonoids, carotenoid contents, and antioxidant activity of 12 purslane accessions were investigated against five levels of salinity (0, 8, 16, 24 and 32dSm(-1)). In untreated plants, the DM contents ranged between 8.0-23.4g/pot; total phenolics contents (TPC) between 0.96-9.12mgGAEg(-1)DW; total flavonoid contents (TFC) between 0.15-1.44mgREg(-1)DW; and total carotenoid contents (TCC) between 0.52BCEg(-1)DW. While FRAP activity ranged from 8.64-104.21mgTEg(-1)DW (about 12-fold) and DPPH activity between 2.50-3.30mgmL(-1) IC50 value. Different levels of salinity treatment resulted in 8-35% increases in TPC; about 35% increase in TFC; and 18-35% increases in FRAP activity. Purslane accessions Ac4, Ac5, Ac6 and Ac8 possessed potentials for salinity-induced augmented production of bioactive compounds which in turn can be harnessed for possible human health benefits.
    Matched MeSH terms: Portulaca/chemistry*
  6. Alam MA, Juraimi AS, Rafii MY, Abdul Hamid A
    Biomed Res Int, 2015;2015:105695.
    PMID: 25802833 DOI: 10.1155/2015/105695
    13 selected purslane accessions were subjected to five salinity levels 0, 8, 16, 24, and 32 dS m(-1). Salinity effect was evaluated on the basis of biomass yield reduction, physiological attributes, and stem-root anatomical changes. Aggravated salinity stress caused significant (P < 0.05) reduction in all measured parameters and the highest salinity showed more detrimental effect compared to control as well as lower salinity levels. The fresh and dry matter production was found to increase in Ac1, Ac9, and Ac13 from lower to higher salinity levels but others were badly affected. Considering salinity effect on purslane physiology, increase in chlorophyll content was seen in Ac2, Ac4, Ac6, and Ac8 at 16 dS m(-1) salinity, whereas Ac4, Ac9, and Ac12 showed increased photosynthesis at the same salinity levels compared to control. Anatomically, stem cortical tissues of Ac5, Ac9, and Ac12 were unaffected at control and 8 dS m(-1) salinity but root cortical tissues did not show any significant damage except a bit enlargement in Ac12 and Ac13. A dendrogram was constructed by UPGMA based on biomass yield and physiological traits where all 13 accessions were grouped into 5 clusters proving greater diversity among them. The 3-dimensional principal component analysis (PCA) has also confirmed the output of grouping from cluster analysis. Overall, salinity stressed among all 13 purslane accessions considering biomass production, physiological growth, and anatomical development Ac9 was the best salt-tolerant purslane accession and Ac13 was the most affected accession.
    Matched MeSH terms: Portulaca/physiology*
  7. Alam MA, Juraimi AS, Rafii MY, Hamid AA, Aslani F, Hakim MA
    Biol Res, 2016 Apr 18;49:24.
    PMID: 27090643 DOI: 10.1186/s40659-016-0084-5
    This study was undertaken to determine the effects of varied salinity regimes on the morphological traits (plant height, number of leaves, number of flowers, fresh and dry weight) and major mineral composition of 13 selected purslane accessions. Most of the morphological traits measured were reduced at varied salinity levels (0.0, 8, 16, 24 and 32 dS m(-1)), but plant height was found to increase in Ac1 at 16 dS m(-1) salinity, and Ac13 was the most affected accession. The highest reductions in the number of leaves and number of flowers were recorded in Ac13 at 32 dS m(-1) salinity compared to the control. The highest fresh and dry weight reductions were noted in Ac8 and Ac6, respectively, at 32 dS m(-1) salinity, whereas the highest increase in both fresh and dry weight was recorded in Ac9 at 24 dS m(-1) salinity compared to the control. In contrast, at lower salinity levels, all of the measured mineral levels were found to increase and later decrease with increasing salinity, but the performance of different accessions was different depending on the salinity level. A dendrogram was also constructed by UPGMA based on the morphological traits and mineral compositions, in which the 13 accessions were grouped into 5 clusters, indicating greater diversity among them. A three-dimensional principal component analysis also confirmed the output of grouping from cluster analysis.
    Matched MeSH terms: Portulaca/anatomy & histology*; Portulaca/chemistry*
  8. Uddin MK, Juraimi AS, Hossain MS, Nahar MA, Ali ME, Rahman MM
    ScientificWorldJournal, 2014;2014:951019.
    PMID: 24683365 DOI: 10.1155/2014/951019
    Purslane (Portulaca oleracea L.) is an important plant naturally found as a weed in field crops and lawns. Purslane is widely distributed around the globe and is popular as a potherb in many areas of Europe, Asia, and the Mediterranean region. This plant possesses mucilaginous substances which are of medicinal importance. It is a rich source of potassium (494 mg/100 g) followed by magnesium (68 mg/100 g) and calcium (65 mg/100 g) and possesses the potential to be used as vegetable source of omega-3 fatty acid. It is very good source of alpha-linolenic acid (ALA) and gamma-linolenic acid (LNA, 18 : 3 w3) (4 mg/g fresh weight) of any green leafy vegetable. It contained the highest amount (22.2 mg and 130 mg per 100 g of fresh and dry weight, resp.) of alpha-tocopherol and ascorbic acid (26.6 mg and 506 mg per 100 g of fresh and dry weight, resp.). The oxalate content of purslane leaves was reported as 671-869 mg/100 g fresh weight. The antioxidant content and nutritional value of purslane are important for human consumption. It revealed tremendous nutritional potential and has indicated the potential use of this herb for the future.
    Matched MeSH terms: Portulaca/chemistry*
  9. Alam MA, Juraimi AS, Rafii MY, Abdul Hamid A, Aslani F, Hasan MM, et al.
    Biomed Res Int, 2014;2014:296063.
    PMID: 24579078 DOI: 10.1155/2014/296063
    The methanolic extracts of 13 accessions of purslane were analyzed for their total phenol content (TPC), total flavonoid contents (TFC), and total carotenoid contents (TCC) and antioxidant activity of extracts was screened using FRAP assay and DPPH radical scavenging methods. The TPC, TFC, and TCC ranged from 0.96 ± 0.04 to 9.12 ± 0.29 mg GAE/g DW, 0.13 ± 0.04 to 1.44 ± 0.08 mg RE/g DW, and 0.52 ± 0.06 to 5.64 ± 0.09 mg (β-carotene equivalent) BCE/g DW, respectively. The DPPH scavenging (IC50) activity varied between 2.52 ± 0.03 mg/mL and 3.29 ± 0.01 mg/mL and FRAP ranged from 7.39 ± 0.08 to 104.2 ± 6.34  μmol TE/g DW. Among all the measured micro- and macrominerals K content was the highest followed by N, Na, Ca, Mg, P, Fe, Zn, and Mn. The overall findings proved that ornamental purslane was richer in antioxidant properties, whereas common purslane possesses more mineral contents than ornamental ones.
    Matched MeSH terms: Portulaca/chemistry*
  10. Remali J, Sarmin N'M, Ng CL, Tiong JJL, Aizat WM, Keong LK, et al.
    PeerJ, 2017;5:e3738.
    PMID: 29201559 DOI: 10.7717/peerj.3738
    Background: Streptomyces are well known for their capability to produce many bioactive secondary metabolites with medical and industrial importance. Here we report a novel bioactive phenazine compound, 6-((2-hydroxy-4-methoxyphenoxy) carbonyl) phenazine-1-carboxylic acid (HCPCA) extracted from Streptomyces kebangsaanensis, an endophyte isolated from the ethnomedicinal Portulaca oleracea.

    Methods: The HCPCA chemical structure was determined using nuclear magnetic resonance spectroscopy. We conducted whole genome sequencing for the identification of the gene cluster(s) believed to be responsible for phenazine biosynthesis in order to map its corresponding pathway, in addition to bioinformatics analysis to assess the potential of S. kebangsaanensis in producing other useful secondary metabolites.

    Results: The S. kebangsaanensis genome comprises an 8,328,719 bp linear chromosome with high GC content (71.35%) consisting of 12 rRNA operons, 81 tRNA, and 7,558 protein coding genes. We identified 24 gene clusters involved in polyketide, nonribosomal peptide, terpene, bacteriocin, and siderophore biosynthesis, as well as a gene cluster predicted to be responsible for phenazine biosynthesis.

    Discussion: The HCPCA phenazine structure was hypothesized to derive from the combination of two biosynthetic pathways, phenazine-1,6-dicarboxylic acid and 4-methoxybenzene-1,2-diol, originated from the shikimic acid pathway. The identification of a biosynthesis pathway gene cluster for phenazine antibiotics might facilitate future genetic engineering design of new synthetic phenazine antibiotics. Additionally, these findings confirm the potential of S. kebangsaanensis for producing various antibiotics and secondary metabolites.

    Matched MeSH terms: Portulaca
  11. Sarmin NIM, Tan GYA, Franco CMM, Edrada-Ebel R, Latip J, Zin NM
    Int J Syst Evol Microbiol, 2013 Oct;63(Pt 10):3733-3738.
    PMID: 23645019 DOI: 10.1099/ijs.0.047878-0
    A spore-forming streptomycete designated strain SUK12(T) was isolated from a Malaysian ethnomedicinal plant. Its taxonomic position, established using a polyphasic approach, indicates that it is a novel species of the genus Streptomyces. Morphological and chemical characteristics of the strain were consistent with those of members of the genus Streptomyces. Analysis of the almost complete 16S rRNA gene sequence placed strain SUK12(T) in the genus Streptomyces where it formed a distinct phyletic line with recognized species of this genus. The strain exhibited highest sequence similarity to Streptomyces corchorusii DSM 40340(T) (98.2 %) followed by Streptomyces chrestomyceticus NRRL B-3310(T) (98.1 %). The G+C content of the genomic DNA was 74 mol%. Chemotaxonomic data [MK-9(H8) as the major menaquinone; LL-diaminopimelic acid as a component of cell-wall peptidoglycan; C12 : 0, C14 : 0, C15 : 0 and C17 : 1 as the major fatty acids; phospholipid type II] supported the affiliation of strain SUK12(T) to the genus Streptomyces. The results of the phylogenetic analysis and phenotypic data derived from this and previous studies allowed the genotypic and phenotypic differentiation of strain SUK12(T) from the related species of the genus Streptomyces. The DNA-DNA relatedness value between strain SUK12(T) and S. corchorusii DSM 40340(T) is 18.85±4.55 %. Strain SUK12(T) produces phenazine-1-carboxylic acid, known as tubermycin B, an antibacterial agent. It is proposed, therefore, that strain SUK12(T) ( = DSM 42048(T) = NRRL B-24860(T)) be classified in the genus Streptomyces as the type strain of Streptomyces kebangsaanensis sp. nov.
    Matched MeSH terms: Portulaca/microbiology*
  12. Dehghan F, Soori R, Gholami K, Abolmaesoomi M, Yusof A, Muniandy S, et al.
    Sci Rep, 2016 12 05;6:37819.
    PMID: 27917862 DOI: 10.1038/srep37819
    The aim of this study was to investigate the responses of atherosclerosis plaque biomarkers to purslane seed consumption and aerobic training in women with T2D. 196 women with T2D were assigned into; (1) placebo (PL), (2) aerobic training+placebo (AT + PL), 3) purslane seeds (PS), aerobic training+purslane seeds (AT + PS). The training program and purslane seeds consumption (2.5 g lunch and 5 g dinner) were carried out for 16 weeks. The components of purslane seed were identified and quantified by GC-MS. Blood samples were withdrawn via venipuncture to examine blood glucose, low-density lipoprotein (LDL), high-density lipoprotein (HDL), cholesterol, triglycerides (TG), creatinine, urea, uric acid, NF-κB, GLP1, GLP1R, TIMP-1, MMP2, MMP9, CRP, CST3, and CTSS expressions. Blood glucose, LDL, cholesterol, TG, creatinine, urea, and uric acid levels in the (P), (AT), and (AT + PS) groups were significantly decreased compared to the pre-experimental levels or the placebo group, while HDL, significantly increased. Furthermore, the protein and mRNA levels of NF-κB, TIMP-1, MMP2 &9, CRP, CST3, and CTSS in the (P), (AT), (AT + PS) significantly decreased compared to pre-experimental or the placebo group, while level of GLP1 and GLP1-R increased drastically. Findings suggest that purslane seed consumption alongside exercising could improve atherosclerosis plaque biomarkers through synergistically mechanisms in T2D.
    Matched MeSH terms: Portulaca/chemistry*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links