Displaying all 20 publications

Abstract:
Sort:
  1. John J, Ann Mani S, Palaniswamy K, Ramanathan A, Razak AA
    J Prosthodont, 2015 Apr;24(3):233-8.
    PMID: 24976147 DOI: 10.1111/jopr.12191
    PURPOSE: The purpose of this preliminary study was to evaluate the flexural properties of poly(methyl methacrylate) (PMMA) reinforced with oil palm empty fruit bunch (OPEFB) fiber.

    MATERIALS AND METHODS: The flexural strength and flexural modulus of three OPEFB fiber-reinforced PMMA were compared with a conventional and a commercially available reinforced PMMA. The three test groups included OPEFB fibers of 0.5 mm thickness, 2.0 mm thickness, and OPEFB cellulose.

    RESULTS: All test group specimens demonstrated improved flexural strength and flexural modulus over conventional PMMA. Reinforcement with OPEFB cellulose showed the highest mean flexural strength and flexural modulus, which were statistically significant when compared to the conventional and commercially reinforced PMMA used in this study. OPEFB fiber in the form of cellulose and 0.5 mm thickness fiber significantly improved flexural strength and flexural modulus of conventional PMMA resin. Further investigation on the properties of PMMA reinforced with OPEFB cellulose is warranted.

    CONCLUSIONS: Natural OPEFB fibers, especially OPEFB in cellulose form, can be considered a viable alternative to existing commercially available synthetic fiber reinforced PMMA resin.

    Matched MeSH terms: Pliability*
  2. Koting S, Karim MR, Mahmud H, Mashaan NS, Ibrahim MR, Katman H, et al.
    ScientificWorldJournal, 2014;2014:596364.
    PMID: 24526911 DOI: 10.1155/2014/596364
    Semi-flexible pavement surfacing is a composite pavement that utilizes the porous pavement structure of the flexible bituminous pavement, which is subsequently grouted with appropriate cementitious materials. This study aims to investigate the compressive strength, flexural strength, and workability performance of cementitious grout. The grout mixtures are designed to achieve high strength and maintain flow properties in order to allow the cement slurries to infiltrate easily through unfilled compacted skeletons. A paired-sample t-test was carried out to find out whether water/cement ratio, SP percentages, and use of silica fume influence the cementitious grout performance. The findings showed that the replacement of 5% silica fume with an adequate amount of superplasticizer and water/cement ratio was beneficial in improving the properties of the cementitious grout.
    Matched MeSH terms: Pliability*
  3. Al-Makramani BM, Razak AA, Abu-Hassan MI
    J Appl Oral Sci, 2010 Dec;18(6):607-12.
    PMID: 21308292
    Advances in all-ceramic systems have established predictable means of providing metal-free aesthetic and biocompatible materials. These materials must have sufficient strength to be a practical treatment alternative for the fabrication of crowns and fixed partial dentures.

    OBJECTIVES: The aim of this study was to compare the biaxial flexural strength of three core ceramic materials.

    MATERIAL AND METHODS: Three groups of 10 disc-shaped specimens (16 mm diameter x 1.2 mm thickness - in accordance with ISO-6872, 1995) were made from the following ceramic materials: Turkom-Cera Fused Alumina [(Turkom-Ceramic (M) Sdn Bhd, Puchong, Selangor, Malaysia)], In-Ceram (Vita Zahnfabrik, Bad Säckingen, Baden-Württemberg, Germany) and Vitadur-N (Vita Zahnfabrik, Bad Säckingen, Baden-Württemberg, Germany), which were sintered according to the manufacturer's recommendations. The specimens were subjected to biaxial flexural strength test in an universal testing machine at a crosshead speed of 0.5 mm/min. The definitive fracture load was recorded for each specimen and the biaxial flexural strength was calculated from an equation in accordance with ISO-6872.

    RESULTS: The mean biaxial flexural strength values were: Turkom-Cera: 506.8 ± 87.01 MPa, In-Ceram: 347.4 ± 28.83 MPa and Vitadur-N: 128.7 ± 12.72 MPa. The results were analyzed by the Levene's test and Dunnett's T3 post-hoc test (SPSS software V11.5.0 for Windows, SPSS, Chicago, IL, USA ) at a preset significance level of 5% because of unequal group variances (P<0.001). There was statistically significant difference between the three core ceramics (P<0.05). Turkom-Cera showed the highest biaxial flexural strength, followed by In-Ceram and Vitadur-N.

    CONCLUSIONS: Turkom-Cera core had significantly higher flexural strength than In-Ceram and Vitadur-N ceramic core materials.

    Matched MeSH terms: Pliability*
  4. Rahaman Ali AAA, John J, Mani SA, El-Seedi HR
    J Prosthodont, 2020 Aug;29(7):611-616.
    PMID: 30637856 DOI: 10.1111/jopr.13018
    PURPOSE: To assess the impact of thermal cycling on flexural properties of denture base acrylic resin reinforced with microcrystalline cellulose (MCC) derived from oil palm empty fruit bunch (OPEFB).

    MATERIALS AND METHODS: The flexural strength and flexural modulus, following thermal cycling (5000 cycles of 5-55°C) of 3 MCC-reinforced poly methyl methacrylate (PMMA) specimens were compared with the conventional and commercially available high-impact PMMA. The 3 test groups were represented by addition of various weight combinations of MCC and acrylic powders.

    RESULTS: All 3 test groups with the addition of MCC demonstrated improved flexural strength and flexural modulus compared to the conventional resin, without and after thermal cycling. The highest mean flexural strength corresponded to the specimens reinforced with 5% MCC followed by 2% MCC.

    CONCLUSION: Addition of MCC derived from OPEFB to PMMA may be a viable alternative to the existing, commercially available synthetic reinforced PMMA resins. The potential application of natural fillers in the fabrication of a reinforced denture base resin needs further study.

    Matched MeSH terms: Pliability
  5. Ahamed E, Hasan MM, Faruque MRI, Mansor MFB, Abdullah S, Islam MT
    PLoS One, 2018;13(6):e0199150.
    PMID: 29924859 DOI: 10.1371/journal.pone.0199150
    In this paper, we introduce a new compact left-handed tunable metamaterial structure, inspired by a joint T-D shape geometry on a flexible NiAl2O4 substrate. The designed metamaterial exhibits an extra-large negative refractive index bandwidth of 6.34 GHz, with an operating frequency range from 4 to 18 GHz. We demonstrate the effects of substrate material thickness on the effective properties of metamaterial using two substrate materials: 1) flame retardant 4 and 2) flexible nickel aluminate. A finite integration technique based on the Computer Simulation Technology Microwave Studio electromagnetic simulator was used for our design, simulation, and investigation. A finite element method based on an HFSS (High Frequency Structure Simulator) electromagnetic simulator is also used to simulate results, perform verifications, and compare the measured results. The simulated resonance peaks occurred at 6.42 GHz (C-band), 9.32 GHz (X-band), and 16.90 GHz (Ku-band), while the measured resonance peaks occurred at 6.60 GHz (C-band), 9.16 GHz (X-band) and 17.28 GHz (Ku-band). The metamaterial structure exhibited biaxial tunable properties by changing the electromagnetic wave propagation in the y and z directions and the left-handed characteristics at 11.35 GHz and 13.50 GHz.
    Matched MeSH terms: Pliability
  6. Khoo S, Al-Shamli AK
    Asia Pac J Public Health, 2012 Jan;24(1):128-35.
    PMID: 20460285 DOI: 10.1177/1010539510366178
    This study investigated the relationship between leisure-time physical activity and physical fitness (cardiovascular fitness, body fat percentage, flexibility, muscle strength, and endurance) of 10th-grade male students in Oman. Data were collected from 330 students. All participants completed a descriptive questionnaire, a 1 mile walk/run test; a skinfold analysis of the chest, abdomen, and thigh; a sit and reach test; a hand grip test; and a 1-minute sit-up test. Students spent an average of 19.20 ± 6.77 hours on sedentary activities, 3.46 ± 2.11 hours on sports activities, and 11.22 ± 9.24 hours working per week. The students had an average body fat percentage of 6.38% ± 4.67%, muscle strength 38.04 ± 7.55 kg, flexibility 38.01 ± 7.41 cm, abdominal muscle endurance 38.85 ± 8.15 times/min, and cardiovascular endurance 8.10 ± 1.65 minutes.
    Matched MeSH terms: Pliability/physiology
  7. Yunus N, Rashid AA, Azmi LL, Abu-Hassan MI
    J Oral Rehabil, 2005 Jan;32(1):65-71.
    PMID: 15634304
    Nylon denture base material could be a useful alternative to poly (methyl methacrylate) (PMMA) in special circumstances such as patient allergy to the monomer. The aim of this study was to evaluate the flexural properties of a nylon denture base material (Lucitone FRS), a conventional compression-moulded heat-polymerized (Meliodent), a compression-moulded microwave-polymerized (Acron MC) and an injection-moulded microwave-polymerized (Lucitone 199) PMMA polymers. The effect of aldehyde-free, oxygen releasing disinfectant solution (Perform) on these properties was also investigated. The flexural modulus and the flexural strength were assessed with a three-point bending test. Specimens were stored in water at a temperature of 37 degrees C for 30 days. For each material, half of the prepared specimens were randomly selected and immersed in the disinfectant 24 h prior to testing. Results were compared statistically at a confidence level of 95%. The result showed that in both the control and disinfected groups, the flexural modulus of nylon was significantly lower than the three PMMA polymers. The flexural strength of nylon was significantly lower than those of Meliodent and Acron MC but was comparable with Lucitone 199. A 24-h immersion in the disinfecting solution increased the rigidity of nylon denture base material.
    Matched MeSH terms: Pliability/drug effects
  8. Chan CYW, Chiu CK, Kwan MK
    Spine (Phila Pa 1976), 2016 Aug 15;41(16):E973-E980.
    PMID: 26909833 DOI: 10.1097/BRS.0000000000001516
    STUDY DESIGN: A prospective study.

    OBJECTIVE: The aim of this study was to analyze the proximal thoracic (PT) flexibility and its compensatory ability above the "potential UIV."

    SUMMARY OF BACKGROUND DATA: Shoulder and neck imbalance can be caused by overcorrection of the main thoracic (MT) curve due to inability of PT segment to compensate.

    METHODS: Cervical supine side bending (CSB) radiographs of 100 Lenke 1 and 2 patients were studied. We further stratified Lenke 1 curves into Lenke 1-ve: PT side bending (PTSB) 80.0% of cases of the PT segment were unable to compensate at T3-T6. In Lenke 1+ve curves, 78.4% were unable to compensate at T6, followed by T5 (75.7%), T4 (73.0%), T3 (59.5%), T2 (27.0%), and T1 (21.6%). In Lenke 1-ve curves, 36.4% of cases were unable to compensate at T6, followed by T5 (45.5%), T4 (45.5%), T3 (30.3%), T2 (21.2%), and T1 (15.2%). A significant difference between Lenke 1-ve and Lenke 1+ve was observed from T3 to T6. The difference between Lenke 1+ve and Lenke 2 curves was significant only at T2.

    CONCLUSION: The compensation ability and the flexibility of the PT segments of Lenke 1-ve and Lenke 1+ve curves were different. Lenke 1+ve curves demonstrated similar characteristics to Lenke 2 curves.

    LEVEL OF EVIDENCE: 3.

    Matched MeSH terms: Pliability/physiology*
  9. Ali IL, Yunus N, Abu-Hassan MI
    J Prosthodont, 2008 Oct;17(7):545-9.
    PMID: 18761582 DOI: 10.1111/j.1532-849X.2008.00357.x
    This study compared the surface hardness, flexural strength, and flexural modulus of a light- and heat-cured urethane dimethacrylate (UDMA) to two conventional polymethyl methacrylate (PMMA) denture base resins. The effect of less-than-optimal processing condition on the hardness of internal and external surfaces of UDMA specimens was also investigated.
    Matched MeSH terms: Pliability
  10. Tejo BA, Salleh AB, Pleiss J
    J Mol Model, 2004 Dec;10(5-6):358-66.
    PMID: 15597204
    The effect of organic solvent on the structure and dynamics of proteins was investigated by multiple molecular dynamics simulations (1 ns each) of Candida rugosa lipase in water and in carbon tetrachloride. The choice of solvent had only a minor structural effect. For both solvents the open and the closed conformation of the lipase were near to their experimental X-ray structures (C(alpha) rms deviation 1-1.3 A). However, the solvents had a highly specific effect on the flexibility of solvent-exposed side chains: polar side chains were more flexible in water, but less flexible in organic solvent. In contrast, hydrophobic residues were more flexible in organic solvent, but less flexible in water. As a major effect solvent changed the dynamics of the lid, a mobile element involved in activation of the lipase, which fluctuated as a rigid body about its average position. While in water the deviations were about 1.6 A, organic solvent reduced flexibility to 0.9 A. This increase rigidity was caused by two salt bridges (Lys85-Asp284, Lys75-Asp79) and a stable hydrogen bond (Lys75-Asn 292) in organic solvent. Thus, organic solvents stabilize the lid but render the side chains in the hydrophobic substrate-binding site more mobile. [figure: see text]. Superimposition of open (black, PDB entry 1CRL) and closed (gray, PDB entry 1TRH) conformers of C. rugosa lipase. The mobile lid is indicated.
    Matched MeSH terms: Pliability
  11. Ahmad R, Morgano SM, Wu BM, Giordano RA
    J Prosthet Dent, 2005 Nov;94(5):421-9.
    PMID: 16275301
    Many studies on the strengthening effects of grinding and polishing, as well as heat treatment on ceramics, are not well standardized or use commercially available industrial polishing systems. The reported effectiveness of these strengthening mechanisms on ceramics may not be applicable to clinical dentistry.
    Matched MeSH terms: Pliability
  12. Lim HH, Ong CH
    Med J Malaysia, 2001 Jun;56 Suppl C:41-5.
    PMID: 11814248
    The Pedriolle torsion meter is an established method of vertebral rotation assessment in scoliosis. However, the assessment of scoliosis by this method is static and indirect. The objective of this study is to compare the accuracy of a direct method of assessing scoliosis rotation by fluoroscopy compared to the Pedriolle torsion meter. Secondly, to determine that vertebral body rotation changes with supine posture compared to erect position. Eight volunteers with idiopathic scoliosis were assessed for the apical vertebral rotation with this method and the Pedriolle torsion meter. These patients were also assessed in the supine and erect position with the fluoroscopic method to determine if the apical vertebral rotation would change with posture. The mean Cobb angle of the curves was 62.8 degrees (range 45 degrees to 86 degrees). The mean apical vertebral rotation in a standing position was assessed to be 21.5 degrees by Pedriolle torsion meter and 29 degrees by the fluoroscopic method. This difference was not statistically significant by the student t-test. In most patient, the rotation of vertebrae improved by a varying degree ranging from none to 24 degrees in the supine position. In conclusion, the fluoroscopic method is an alternate mean of measuring vertebrae rotation in idiopathic scoliosis, with comparable accuracy to the Pedriolle torsion meter method. The amount of vertebral rotation changes with posture of the patient.
    Matched MeSH terms: Pliability
  13. Parra-Cruz R, Jäger CM, Lau PL, Gomes RL, Pordea A
    J Phys Chem B, 2018 09 13;122(36):8526-8536.
    PMID: 30114369 DOI: 10.1021/acs.jpcb.8b05926
    The stability of enzymes is critical for their application in industrial processes, which generally require different conditions from the natural enzyme environment. Both rational and random protein engineering approaches have been used to increase stability, with the latter requiring extensive experimental effort for the screening of variants. Moreover, some general rules addressing the molecular origin of protein thermostability have been established. Herein, we demonstrate the use of molecular dynamics simulations to gain molecular level understanding of protein thermostability and to engineer stabilizing mutations. Carbonic anhydrase (CA) is an enzyme with a high potential for biotechnological carbon capture applications, provided it can be engineered to withstand the high temperature process environments, inevitable in most gas treatment units. In this study, we used molecular dynamics simulations at 343, 353, and 363 K to study the relationship between structure flexibility and thermostability in bacterial α-CAs and applied this knowledge to the design of mutants with increased stability. The most thermostable α-CA known, TaCA from Thermovibrio ammonificans, had the most rigid structure during molecular dynamics simulations, but also showed regions with high flexibility. The most flexible amino acids in these regions were identified from root mean square fluctuation (RMSF) studies, and stabilizing point mutations were predicted based on their capacity to improve the calculated free energy of unfolding. Disulfide bonds were also designed at sites with suitable geometries and selected based on their location at flexible sites, assessed by B-factor calculation. Molecular dynamics simulations allowed the identification of five mutants with lower RMSF of the overall structure at 400 K, compared to wild-type TaCA. Comparison of free-energy landscapes between wild-type TaCA and the most promising mutants, Pro165Cys-Gln170Cys and Asn140Gly, showed an increased conformational stability of the mutants at 400 K.
    Matched MeSH terms: Pliability
  14. Nilghaz A, Wicaksono DH, Gustiono D, Abdul Majid FA, Supriyanto E, Abdul Kadir MR
    Lab Chip, 2012 Jan 7;12(1):209-18.
    PMID: 22089026 DOI: 10.1039/c1lc20764d
    This paper describes the fabrication of microfluidic cloth-based analytical devices (μCADs) using a simple wax patterning method on cotton cloth for performing colorimetric bioassays. Commercial cotton cloth fabric is proposed as a new inexpensive, lightweight, and flexible platform for fabricating two- (2D) and three-dimensional (3D) microfluidic systems. We demonstrated that the wicking property of the cotton microfluidic channel can be improved by scouring in soda ash (Na(2)CO(3)) solution which will remove the natural surface wax and expose the underlying texture of the cellulose fiber. After this treatment, we fabricated narrow hydrophilic channels with hydrophobic barriers made from patterned wax to define the 2D microfluidic devices. The designed pattern is carved on wax-impregnated paper, and subsequently transferred to attached cotton cloth by heat treatment. To further obtain 3D microfluidic devices having multiple layers of pattern, a single layer of wax patterned cloth can be folded along a predefined folding line and subsequently pressed using mechanical force. All the fabrication steps are simple and low cost since no special equipment is required. Diagnostic application of cloth-based devices is shown by the development of simple devices that wick and distribute microvolumes of simulated body fluids along the hydrophilic channels into reaction zones to react with analytical reagents. Colorimetric detection of bovine serum albumin (BSA) in artificial urine is carried out by direct visual observation of bromophenol blue (BPB) colour change in the reaction zones. Finally, we show the flexibility of the novel microfluidic platform by conducting a similar reaction in a bent pinned μCAD.
    Matched MeSH terms: Pliability
  15. Benjakul P, Cheunarrom C, Ongthiemsak C
    J Oral Sci, 2001 Mar;43(1):15-9.
    PMID: 11383631
    Stainless steel wrought wires used as clasp arms for removable partial dentures in Thailand were compared with those used in some other countries (in the as-received condition) in terms of flexibility, Vickers microhardness and composition. The results showed that there were significant differences (P< or =0.05) among the wires. A Japanese stainless steel wire (SK) was obviously different from the others. It had the lowest proportional limit and microhardness, but its flexibility was almost the same. The chemical composition of each wire was not greatly different. The wires were about 18-20 wt% chromium and 8-9 wt% nickel, except for the SK wire, which had about 12 wt% nickel.
    Matched MeSH terms: Pliability
  16. Elshereksi NW, Ghazali MJ, Muchtar A, Azhari CH
    J Dent, 2017 Jan;56:121-132.
    PMID: 27916635 DOI: 10.1016/j.jdent.2016.11.012
    OBJECTIVES: This study aimed to fabricate and characterise silanated and titanated nanobarium titanate (NBT) filled poly(methyl methacrylate) (PMMA) denture base composites and to evaluate the behaviour of a titanate coupling agent (TCA) as an alternative coupling agent to silane. The effect of filler surface modification on fracture toughness was also studied.

    METHODS: Silanated, titanated and pure NBT at 5% were incorporated in PMMA matrix. Neat PMMA matrix served as a control. NBT was sonicated in MMA prior to mixing with the PMMA. Curing was carried out using a water bath at 75°C for 1.5h and then at 100°C for 30min. NBT was characterised via Fourier transform-infrared spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and Brunauer-Emmett-Teller (BET) analysis before and after surface modification. The porosity and fracture toughness of the PMMA nanocomposites (n=6, for each formulation and test) were also evaluated.

    RESULTS: NBT was successfully functionalised by the coupling agents. The TCA exhibited the lowest percentage of porosity (0.09%), whereas silane revealed 0.53% porosity. Statistically significant differences in fracture toughness were observed among the fracture toughness values of the tested samples (p<0.05). While the fracture toughness of untreated samples was reduced by 8%, an enhancement of 25% was achieved after titanation. In addition, the fracture toughness of the titanated samples was higher than the silanated ones by 10%.

    CONCLUSION: Formation of a monolayer on the surface of TCA enhanced the NBT dispersion, however agglomeration of silanated NBT was observed due to insufficient coverage of NBT surface. Such behaviour led to reducing the porosity level and improving fracture toughness of titanated NBT/PMMA composites. Thus, TCA seemed to be more effective than silane.

    CLINICAL SIGNIFICANCE: Minimising the porosity level could have the potential to reduce fungus growth on denture base resin to be hygienically accepTable Such enhancements obtained with Ti-NBT could lead to promotion of the composites' longevity.

    Matched MeSH terms: Pliability
  17. Mohamad S, Shuid AN, Mohamed N, Fadzilah FM, Mokhtar SA, Abdullah S, et al.
    Clinics (Sao Paulo), 2012 Sep;67(9):1077-85.
    PMID: 23018307
    OBJECTIVE: Osteoporosis increases the risk of bone fractures and may impair fracture healing. The aim of this study was to investigate whether alpha-tocopherol can improve the late-phase fracture healing of osteoporotic bones in ovariectomized rats.

    METHOD: In total, 24 female Sprague-Dawley rats were divided into three groups. The first group was sham-operated, and the other two groups were ovariectomized. After two months, the right femora of the rats were fractured under anesthesia and internally repaired with K-wires. The sham-operated and ovariectomized control rat groups were administered olive oil (a vehicle), whereas 60 mg/kg of alpha-tocopherol was administered via oral gavage to the alpha-tocopherol group for six days per week over the course of 8 weeks. The rats were sacrificed, and the femora were dissected out. Computed tomography scans and X-rays were performed to assess fracture healing and callus staging, followed by the assessment of callus strengths through the biomechanical testing of the bones.

    RESULTS: Significantly higher callus volume and callus staging were observed in the ovariectomized control group compared with the sham-operated and alpha-tocopherol groups. The ovariectomized control group also had significantly lower fracture healing scores than the sham-operated group. There were no differences between the alpha-tocopherol and sham-operated groups with respect to the above parameters. The healed femora of the ovariectomized control group demonstrated significantly lower load and strain parameters than the healed femora of the sham-operated group. Alpha-tocopherol supplementation was not able to restore these biomechanical properties.

    CONCLUSION: Alpha-tocopherol supplementation appeared to promote bone fracture healing in osteoporotic rats but failed to restore the strength of the fractured bone.

    Matched MeSH terms: Pliability
  18. Eng CC, Ibrahim NA, Zainuddin N, Ariffin H, Yunus WM
    ScientificWorldJournal, 2014;2014:213180.
    PMID: 25254230 DOI: 10.1155/2014/213180
    Natural fiber as reinforcement filler in polymer composites is an attractive approach due to being fully biodegradable and cheap. However, incompatibility between hydrophilic natural fiber and hydrophobic polymer matrix restricts the application. The current studies focus on the effects of incorporation of silane treated OPMF into polylactic acid (PLA)/polycaprolactone (PCL)/nanoclay/OPMF hybrid composites. The composites were prepared by melt blending technique and characterize the composites with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). FTIR spectra indicated that peak shifting occurs when silane treated OPMF was incorporated into hybrid composites. Based on mechanical properties results, incorporation of silane treated OPMF enhances the mechanical properties of unmodified OPMF hybrid composites with the enhancement of flexural and impact strength being 17.60% and 48.43%, respectively, at 10% fiber loading. TGA thermogram shows that incorporation of silane treated OPMF did not show increment in thermal properties of hybrid composites. SEM micrographs revealed that silane treated OPMF hybrid composites show good fiber/matrix adhesion as fiber is still embedded in the matrix and no cavity is present on the surface. Water absorption test shows that addition of less hydrophilic silane treated OPMF successfully reduces the water uptake of hybrid composites.
    Matched MeSH terms: Pliability
  19. Memon MS, Yunus N, Razak AA
    Int J Prosthodont, 2001 May-Jun;14(3):214-8.
    PMID: 11484567
    PURPOSE: The impact strength and the flexural properties of denture base materials are of importance in predicting their clinical performance upon sudden loading. This study compares the impact and transverse strengths and the flexural modulus of three denture base polymers.
    MATERIALS AND METHODS: The investigation included a relatively new microwave-polymerized polyurethane-based denture material processed by an injection-molding technique, a conventional microwave-polymerized denture material, and a heat-polymerized compression-molded poly(methyl methacrylate) (PMMA) denture material. Impact strength was determined using a Charpy-type impact tester. The transverse strength and the flexural modulus were assessed with a three-point bending test. The results were subjected to statistical analysis using a one-way analysis of variance and the Scheffé test for comparison.
    RESULTS: The impact strength of the microwave-polymerized injection-molded polymer was 6.3 kl/m2, while its flexural strength was 66.2 MPa. These values were lower than those shown by the two compression-molded PMMA-based polymers. The differences were statistically significant. The flexural modulus of the new denture material was 2,832 MPa, which was higher than the conventional heat-polymerized polymer but was comparable to the other microwave-polymerized PMMA-based polymer. The difference in the flexural modulus was statistically significant.
    CONCLUSION: In terms of the impact and flexural strengths, the new microwave-polymerized, injection-molded, polyurethane-based polymer offered no advantage over the existing heat- and microwave-polymerized PMMA-based denture base polymers. However, it has a rigidity comparable to that of the microwave-polymerized PMMA polymer.
    Matched MeSH terms: Pliability
  20. Bokhari RA, Lau SF, Mohamed S
    Menopause, 2018 02;25(2):202-210.
    PMID: 28926512 DOI: 10.1097/GME.0000000000000980
    OBJECTIVE: Orthosiphon stamineus (OS) or Misai Kucing (Java tea) is a popular herbal supplement from Southeast Asia for various metabolic, age-related diseases. This study investigated the potential use of OS leaf extracts to ameliorate osteoporosis in ovariectomized rats.

    METHODS: Fifty-six female Sprague-Dawley rats were randomly allocated into eight groups (n = 7): SHAM (healthy sham control); OVX (ovarietomized) nontreated rats (negative control); OVX + Remifemin (100 mg/kg body weight), and 2% green tea extract (positive controls); OVX + OS 50% ethanolic and aqueous extracts, both at either 150 or 300 mg/kg. After 16 weeks, the rats' bones and blood were evaluated for osteoporosis indicators (protein and mRNA expressions), micro-computed tomography for bone histomorphometry, and three-point bending test for tibia mechanical strength.

    RESULTS: The extracts dose-dependently and significantly (P 

    Matched MeSH terms: Pliability/drug effects
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links