Displaying all 11 publications

Abstract:
Sort:
  1. Lim LH, Justine JL
    Syst Parasitol, 2011 Feb;78(2):123-38.
    PMID: 21279562 DOI: 10.1007/s11230-010-9283-6
    Lethrinitrema gibbus n. g., n. sp. and L. dossenus n. sp. are described from the fish Lethrinus rubrioperculatus Sato collected off New Caledonia, South Pacific. Members of Lethrinitrema n. g. (Ancyrocephalidae) are characterised by having two pyriform haptoral reservoirs and ventral anchors with lateral grooves. The elongate tubular distal end of each reservoir bifurcates, draining into a superficial lateral groove on each side of the ventral anchors. The haptoral reservoirs are postulated to store secretory products which assist in attachment to the host. Lethrinitrema spp. also possess tandem gonads, a male copulatory organ without an accessory piece or with thinly sclerotised accessory piece, and a dextrolateral, non-sclerotised vaginal bulb. The two new species have small, poorly demarcated haptors with small haptoral armament and a crown-like piece on the tip of the inner root of the ventral anchors. They differ from each other in the shape and size of the ventral bar and male copulatory organ (40-45 μm in length in L. gibbus vs 24-30 μm in L. dossenus). Three other species, previously included in Haliotrema Johnston & Tiegs, 1922, are transferred to Lethrinitrema, i.e. L. chrysostomi (Young, 1968) n. comb., L. fleti (Young, 1968) n. comb. (both briefly redescribed from paratypes) and L. lethrini (Yamaguti, 1937) n. comb. All species of Lethrinitrema parasitise Lethrinus spp. (Lethrinidae), and there is evidence for the existence of further Lethrinitrema spp. on Lethrinus spp. in the Indo-Pacific region.
    Matched MeSH terms: Platyhelminths/classification*
  2. Lim LH, Gibson DI
    Syst Parasitol, 2010 Oct;77(2):107-29.
    PMID: 20852983 DOI: 10.1007/s11230-010-9261-z
    Four new and one unidentified species of Neohaliotrema Yamaguti, 1965 were obtained from the gills of the Indo-Pacific sergeant Abudefduf vaigensis (Quoy & Gaimard) off Pulau Langkawi, Malaysia. The five species, N. malayense n. sp., N. bombini n. sp., N. andamanense n. sp., N. parvum n. sp. and an unidentified Neohaliotrema sp. (similar to N. macracanthum Zhukov, 1976), are described and distinguished based mainly on features of the haptor. Species of this genus are divisible into two groups, the 'maomao group', with two pairs of morphometrically modified 'marginal' hooks and a fenestrated haptor, and the 'gracile group', with morphologically similar marginal hooks and an entire haptor. With the exception of N. bombini n. sp., the species described fit within the 'maomao group'. It is suggested that the more complex Neohaliotrema species of the 'maomao group' have modified hooks 1 and 2 on a haptoral 'isthmus' between two large apertures, i.e. 'windows', whereas the less complex species lacking these features are those of the 'gracile group'. Neohaliotrema spp. have only a single pair of pigmented eye-spots. A fenestrated haptor is unique to the Neohaliotrema spp. of the 'maomao group'. The generic diagnosis of Neohaliotrema is amended to include new data and a key to its known species is presented.
    Matched MeSH terms: Platyhelminths/classification*
  3. Gerasev PI
    Parazitologia, 2009 Nov-Dec;43(6):478-501.
    PMID: 20198967
    Systematization and description of composition and structure of the monogeneans from the genus Dactylogyrus Diesing, 1850 mostly having five rayed ventral (additional) bar of the haptor and parasitizing mainly Palaearctic Barbinae and Leuciscinae, were carried out. These dactylogyrids have Palaearctic origin and occur in the north-western Africa, central and southern Europe, Transcaucasia, middle Asia, Mesopotamia and also in India and the Malacca Peninsula. Previously the analysis of dactylogyrids' distribution by continents (Gerasev et al., 1996), geographical regions (Gerasev, Timofeeva, 1997), taxonomic groups of hosts (Gerasev, 2008a, 6), and different taxonomic groups of host inside one geographical division (Kolpakov et al., 2007; Gerasev et al., 2007, 2008) was performed. This analysis have not been always resulted in the understanding of conjugate evolution of these parasites and their fish hosts, as well as in the resolving of problems concerned with speciation of monogeneans and phylogeography of their hosts. Therefore, in present work we consider more than one geographical region, different fish taxa, and the morphological groups of worms reflecting morphological variational series of types of copulatory organ and additional bar. Typification of copulatory organ, additional bar, anchors, and type of seating for 11 Palaearctic morphological groups of dactylogyrids mainly having five rayed additional ventral bar, were carried out. Four morphological groups of dactylogyrids of African, Indian, and different Palaearctic origin also parasitizing Palaearctic barbs were additionally included into analysis. In all, 92 species of dctylogyrids from 78 host species were considered. Analysis of speciation and phylogeny of dactylogyrids having five rayed additional ventral bar of haptor; conjugate evolution of these dactylogyrids and their fish hosts (mainly Barbinae); point of origin of Palaearctic polyploids Barbinae, and expansion of these fishes over the territory of Palaearctic will be discussed in next article.
    Matched MeSH terms: Platyhelminths/classification*
  4. Chisholm LA, Whittington ID
    Syst Parasitol, 2005 Jun;61(2):79-84.
    PMID: 15980960
    Decacotyle cairae n. sp. (Monogenea: Monocotylidae) is described from the gills of an unidentified species of Pastinachus collected in the South China Sea off Sematan and Mukah, Sarawak, Borneo, Malaysia. D. cairae can be distinguished from the other six members of the genus by the presence of two simple unsclerotised accessory structures on the dorsal surface of the haptor in combination with a long, narrow, looping male copulatory organ. The host specimens of Pastinachus collected in Borneo also appear to be a new species and the monogenean data support this conclusion. A key to species of Decacotyle is given and their host-specificity is discussed.
    Matched MeSH terms: Platyhelminths/classification*
  5. Lim LH
    Syst Parasitol, 2003 Jun;55(2):115-26.
    PMID: 12815222
    Four new species of Calydiscoides Young, 1969 are described from three species of nemipterids caught off Kemaman, Terengganu, on the eastern coast of Peninsular Malaysia: C. monogrammae n. sp. from Scolopsis monogramma; C. conus n. sp. from S. magaritifer; C. scolopsidis n. sp. from S. margaritifer and S. monogramma; and C. kemamanensis n. sp. from Pentapodus setosus. The present investigation reveals that the squamodiscs (lamellodiscs) are composed of 10-12 short, complete, interlocking and concentric tubular lamellae. The innermost lamella is attached to a pair of adductor muscles.
    Matched MeSH terms: Platyhelminths/classification*
  6. Brooks DR, Palmieri JR
    J Helminthol, 1981 Mar;55(1):39-43.
    PMID: 7229330
    Paradistomoidella cerberi n.g., n.sp. and Paracanthostomum cerberi from Cerberus rhynchops, Xenopharynx pyriformis and Allopharynx mehrai from Ptyas korros, Neopronocephalus orientalis from Geoemyda spinosa, and Duthiersia expansa from Varanus salvator are all reported from the area of Kuala Lumpur, Malaysia. Paradistomoidella cerberi most closely resembles members of Paradistomoides but is characterized by relatively short caeca, a cirrus sac containing a bipartite rather than sinous internal seminal vesicle, and unevenly-sized suckers. Kuala Lumpur is a new locality for Paracanthostomum cerberi, X. pyriformis, A. mehrai, and D. expansa. Ptyas korros is a new host for X. pyriformis and G. spinosa is a new host for N. orientalis.
    Matched MeSH terms: Platyhelminths/classification
  7. Chisholm LA, Whittington ID
    Syst Parasitol, 2012 Jun;82(2):167-76.
    PMID: 22581252 DOI: 10.1007/s11230-012-9358-7
    Three new species of Merizocotyle Cerfontaine, 1894 (Monogenea: Monocotylidae) are described from the nasal tissues of stingrays collected off Borneo. Merizocotyle macrostrobus n. sp. is described from the dwarf whipray Himantura walga (Müller & Henle) collected in shallow waters off Sematan, Sarawak, Malaysia. This species can be distinguished from the other members of the genus by the morphology of the sclerotised male copulatory organ, which is long with many twists and loops. The vaginae of this species are also long and looped. Merizocotyle papillae n. sp. is described from the roughnose stingray Pastinachus solocirostris Last, Manjaji & Yearsley collected off Sematan and Mukah, Sarawak, Malaysia. It is distinguished from the other species of Merizocotyle by the morphology of the male copulatory organ, which is a sclerotised tube that expands slightly and then tapers at the distal end, and by the presence of papillae on the dorsal edge of the haptor. Merizocotyle rhadinopeos n. sp. is described from the whitenose whip ray Himantura uarnacoides (Bleeker) collected off Manggar, East Kalimantan, Indonesia. It can be differentiated by the male copulatory organ, which is a short, narrow, curved, sclerotised tube tapering distally, and the path of the ovary, which runs anteriorly to the base of the oötype. We also provide details of new host and/or locality records for M. australensis (Beverley-Burton & Williams, 1989) Chisholm, Wheeler & Beverley-Burton, 1995, M. icopae Beverley-Burton & Williams, 1989 and M. pseudodasybatis (Hargis, 1955) Chisholm, Wheeler & Beverley-Burton, 1995.
    Matched MeSH terms: Platyhelminths/classification*
  8. Chisholm LA, Whittington lD
    J Parasitol, 2005 Jun;91(3):522-6.
    PMID: 16108542
    Empruthotrema stenophallus n. sp. (Monogenea: Monocotylidae) is described from specimens from the nasal tissue of the blue-spotted maskray Dasyatis kuhlii (Muller and Henle, 1841) collected in shallow waters off Pulau Banggi and Pulau Mabul, Sabah, Borneo, Malaysia. This is the first monogenean species to be described from an elasmobranch collected from Sabah. E. stenophallus can be distinguished from the other 6 members of the genus by the morphology of the sclerotized male copulatory organ, which is narrow, short, and distally tapered. E. dasyatidis Whittington and Kearn, 1992, previously documented from the nasal tissue of several of elasmobranch species from Australia, is recorded from 8 host species distributed around Malaysian Borneo. These represent new host and locality records for this monocotylid. The difficulties in identifying species of Empruthotrema and the apparent lack of host specificity by some members of the genus are discussed.
    Matched MeSH terms: Platyhelminths/classification*
  9. Lim LH
    J Helminthol, 2015 May;89(3):307-16.
    PMID: 24698519 DOI: 10.1017/S0022149X1400008X
    A new genus of the Monogenea, Teraplectanum n. g., is proposed for two new species of diplectanids found on the gills of Terapon theraps Cuvier collected off Carey Island, Peninsular Malaysia. The genus is based on a unique arrangement of the male reproductive system. In the new species spermatozoa stored in the seminal vesicle and secretions stored in the prostatic reservoir are transferred into, and mixed to form semen within, a special sclerotized auxiliary piece (SAP), and not within the copulatory tube as occurs in the majority of monogeneans. Teraplectanum species also possess a unique sclerotized vaginal loop through which the vaginal tube passes en route from the vaginal pore to the seminal receptacle. The two new species are Teraplectanum crassitubus n. sp. (type species) and T. angustitubus n. sp. They differ from each other mainly in the morphology of their copulatory tube: in T. crassitubus, the proximal region of this tube is thicker compared to the slender proximal region in T. angustitubus, although in both cases the tube tapers and twists distally. Of the known diplectanid species, only Diplectanum undulicirrosum Zhang et al., 2000 (currently considered incertae sedis) possesses such sclerotized hard parts, which suggests the same type of arrangement of the male reproductive system. Consequently, D. undulicirrosum is re-assigned to this new genus as Teraplectanum undulicirrosum (Zhang et al., 2000) n. comb. The copulatory tube of T. undulicirrosum is similar to the slender, undulating copulatory tube of T. angustitubus but does not taper distally as in the latter species.
    Matched MeSH terms: Platyhelminths/classification*
  10. Freeman MA, Ogawa K
    Int J Parasitol, 2010 Feb;40(2):255-64.
    PMID: 19715695 DOI: 10.1016/j.ijpara.2009.08.006
    Numerous global reports of the species Udonella caligorum, currently thought to be a species complex, suggests that the group may be species-rich. Herein we describe Udonella fugu n. sp., previously described as U. caligorum, found on the parasitic copepod Pseudocaligus fugu infecting Takifugu spp. from Japan. Using morphological data U. fugu can be distinguished from the current valid species by at least one of the traditionally used characters in udonellid taxonomy, and phylogenetic analyses of ssrDNA sequence data for U. fugu and other udonellids confirm that U. fugu forms a distinct clade from other udonellids including U. caligorum. Variable regions in the ssrDNA demonstrated a range of between 2.75 and 5.5% difference between currently recognized species of Udonella. These differences in ssrDNA sequences are phylogenetically useful when distinguishing between morphologically similar udonellids and can be used in conjunction with other data (morphology, phylogeography and fish host) to help clarify udonellid systematics. Udonella fugu was also found to cause significant damage to farmed tiger puffers through their feeding activities. Individual skin lesions were round in shape but merged with adjoining lesions to form more extensive lacerations. In some of the specimens from P. fugu infecting Takifugu niphobles, the protozoan ciliate Trichodina was found on the udonellid body surface and in their intestinal contents. We conclude that the udonellids are a more species-rich group than currently recognized, that early descriptions of new species may have been synonymized with U. caligorum in error and that the frequent global reports of U. caligorum may actually represent new species. This has led to a wide range of morphological descriptions for U. caligorum, blurring the usefulness of morphological data for the group.
    Matched MeSH terms: Platyhelminths/classification
  11. Littlewood DT, Rohde K, Clough KA
    Int J Parasitol, 1997 Nov;27(11):1289-97.
    PMID: 9421713
    Partial nuclear 28S ribosomal RNA and mitochondrial cytochrome c oxidase subunit I (COI) gene sequences (953 and 385 nucleotides, respectively) of one fish monogenean (outgroup) and six polystome monogeneans (four Polystomoides spp. from the oral cavities and urinary bladders of freshwater turtles in Australia and Malaya, two Neopolystoma spp. from the urinary bladder and conjunctival sac of a freshwater turtle in Australia) were used to examine the question of whether congeneric species infecting different sites in the same host species have speciated in that host by adapting to different sites, or whether species infecting a particular site in one host have given rise to species infecting the same site in different hosts. Results show unequivocally that congeneric species infecting the same site, even of host species belonging to different suborders and occurring on different continents, are more closely related than congeneric species infecting different sites of the same host species. This is interpreted as meaning that speciation has not occurred in one host. Morphological evolution of polystomes has been very slow: few differences between species and even genera have evolved over a period of at least 150 Myr, and this is matched by low substitution rates of nucleotides, and the ambiguous position of species of different genera, depending on whether COI or 28S rDNA sequences are used.
    Matched MeSH terms: Platyhelminths/classification*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links