Displaying all 7 publications

Abstract:
Sort:
  1. Zailani NIM, Hanis F, Anuar MAM
    J Equine Vet Sci, 2024 Mar;134:105018.
    PMID: 38316315 DOI: 10.1016/j.jevs.2024.105018
    This study aimed to evaluate the benefits of using sawdust, pinewood shavings, and rubber wood shavings as horse bedding materials. Nine horses were used in a repeated measure design, where each horse was provided with each of the bedding materials for two consecutive weeks. The weight, cost, mucking out time, ammonia emissions, and urine holding capacity were measured and calculated for each bedding material. Results showed that pinewood shavings had the highest urine-holding capacity, while rubber wood shavings had the lowest absorbency for urine. Pinewood shavings also had lower ammonia emissions compared to sawdust and rubber wood shavings but were significantly more expensive. Sawdust was the cheapest of the three bedding materials, but it was used in greater quantities, which required more time for mucking out. The findings from this study could be used to make informed decisions on bedding materials for stables, taking into consideration the trade-off between cost, maintenance requirements, and labor hours.
    Matched MeSH terms: Pinus*
  2. Sedat Kele?
    Sains Malaysiana, 2017;46:381-386.
    This study presents the optimum cutting ages in Turkish pine (Pinus brutia Ten.) plantations including timber production
    and carbon sequestration values in Turkey. Four different growing spaces are considered. The study also evaluates the
    effects of different discount rates and carbon prices on the optimum cutting ages using net present value approach. The
    growth and yield curves, biomass equations and carbon conversion factors as well as forest plantation costs and timber
    assortments revenues for Turkish pine plantations are used to determine the optimum cutting ages. The results of the
    case study showed that the integration of carbon sequestration benefits into timber production increased the optimum
    cutting ages of Turkish pine plantations for each growing spaces in order to sequester more carbon. The optimum cutting
    ages decreased depending on the increase in discount rates. When carbon prices increased the optimum cutting ages
    also increased.
    Matched MeSH terms: Pinus
  3. Vikashini B, Shanthi A, Ghosh Dasgupta M
    Gene, 2018 Nov 15;676:37-46.
    PMID: 30201104 DOI: 10.1016/j.gene.2018.07.012
    Casuarina equisetifolia L. is an important multi-purpose, fast growing and widely planted tree species native to tropical and subtropical coastlines of Australia, Southeast Asia, Malaysia, Melanesia, Polynesia and New Caledonia. It is a nitrogen-fixing tree mainly used for charcoal making, construction poles, landscaping, timber, pulp, firewood, windbreaks, shelterbelts, soil erosion and sand dune stabilization. Casuarina wood is presently used for paper and pulp production. Raw material with reduced lignin is highly preferred to increase the pulp yield. Hence, understanding the molecular regulation of wood formation in this tree species is vital for selecting industrially suitable phenotypes for breeding programs. The lignin biosynthetic pathway has been extensively studied in tree species like Eucalypts, poplars, pines, Picea, Betula and Acacia sp. However, studies on wood formation at molecular level is presently lacking in casuarinas. Hence, in the present study, the transcriptome of the developing secondary tissues of 15 years old Casuarina equiseitfolia subsp. equisetifolia was sequenced, de novo assembled, annotated and mapped to functional pathways. Transcriptome sequencing generated a total of 26,985 transcripts mapped to 31 pathways. Mining of the annotated data identified nine genes involved in lignin biosynthesis pathway and relative expression of the transcripts in four tissues including scale-like leaves, needle-like brachlets, wood and root were documented. The expression of CeCCR1 and CeF5H were found to be significantly high in wood tissues, while maximum expression of CeHCT was documented in stem. Additionally, CeTUBA and CeH2A were identified as the most stable reference transcript for normalization of qRT-PCR data in C. equisetifolia. The present study is the first wood genomic resource in C. equisetifolia, which will be valuable for functional genomics research in this genus.
    Matched MeSH terms: Pinus/genetics*; Pinus/metabolism
  4. Dee CF, Chong SK, Rahman SA, Omar FS, Huang NM, Majlis BY, et al.
    Nanoscale Res Lett, 2014;9(1):469.
    PMID: 25246872 DOI: 10.1186/1556-276X-9-469
    Hierarchical Si/ZnO trunk-branch nanostructures (NSs) have been synthesized by hot wire assisted chemical vapor deposition method for trunk Si nanowires (NWs) on indium tin oxide (ITO) substrate and followed by the vapor transport condensation (VTC) method for zinc oxide (ZnO) nanorods (NRs) which was laterally grown from each Si nanowires (NWs). A spin coating method has been used for zinc oxide (ZnO) seeding. This method is better compared with other group where they used sputtering method for the same process. The sputtering method only results in the growth of ZnO NRs on top of the Si trunk. Our method shows improvement by having the growth evenly distributed on the lateral sides and caps of the Si trunks, resulting in pine-leave-like NSs. Field emission scanning electron microscope image shows the hierarchical nanostructures resembling the shape of the leaves of pine trees. Single crystalline structure for the ZnO branch grown laterally from the crystalline Si trunk has been identified by using a lattice-resolved transmission electron microscope. A preliminary photoelectrochemical (PEC) cell testing has been setup to characterize the photocurrent of sole array of ZnO NR growth by both hydrothermal-grown (HTG) method and VTC method on ITO substrates. VTC-grown ZnO NRs showed greater photocurrent effect due to its better structural properties. The measured photocurrent was also compared with the array of hierarchical Si/ZnO trunk-branch NSs. The cell with the array of Si/ZnO trunk-branch NSs revealed four-fold magnitude enhancement in photocurrent density compared with the sole array of ZnO NRs obtain from VTC processes.
    Matched MeSH terms: Pinus
  5. Uesaki M, Ashida H, Kitaoka A, Pasqualotto A
    Sci Rep, 2019 10 08;9(1):14440.
    PMID: 31595003 DOI: 10.1038/s41598-019-50912-8
    Changes in the retinal size of stationary objects provide a cue to the observer's motion in the environment: Increases indicate the observer's forward motion, and decreases backward motion. In this study, a series of images each comprising a pair of pine-tree figures were translated into auditory modality using sensory substitution software. Resulting auditory stimuli were presented in an ascending sequence (i.e. increasing in intensity and bandwidth compatible with forward motion), descending sequence (i.e. decreasing in intensity and bandwidth compatible with backward motion), or in a scrambled order. During the presentation of stimuli, blindfolded participants estimated the lengths of wooden sticks by haptics. Results showed that those exposed to the stimuli compatible with forward motion underestimated the lengths of the sticks. This consistent underestimation may share some aspects with visual size-contrast effects such as the Ebbinghaus illusion. In contrast, participants in the other two conditions did not show such magnitude of error in size estimation; which is consistent with the "adaptive perceptual bias" towards acoustic increases in intensity and bandwidth. In sum, we report a novel cross-modal size-contrast illusion, which reveals that auditory motion cues compatible with listeners' forward motion modulate haptic representations of object size.
    Matched MeSH terms: Pinus
  6. Thomas J, Idris NA, Collings DA
    J Microsc, 2017 10;268(1):13-27.
    PMID: 28654160 DOI: 10.1111/jmi.12582
    Pontamine fast scarlet 4B is a red paper and textiles dye that has recently been introduced as a fluorescent probe for plant cell walls. Pontamine exhibits bifluorescence, or fluorescence dependent on the polarization of the excitation light: Because cellulose is aligned within the cell wall, pontamine-labelled cell walls exhibit variable fluorescence as the excitation polarization is modulated. Thus, bifluorescence measurements require polarized excitation that can be directly or indirectly modulated. In our confocal microscopy observations of various cellulose samples labelled with pontamine, we modulated excitation polarization either through sample rotation or by the confocal's scanfield rotation function. This variably rotated laser polarizations on Leica confocal microscopes, but not those from other makers. Beginning with samples with directly observable microfibril orientations, such as purified bacterial cellulose, the velamen of orchid roots and the inner S2 layer of radiata pine compression wood, we demonstrate that modelling the variations in pontamine fluorescence with a sine curve can be used to measure the known microfibril angles. We then measured average local microfibril angles in radiata pine samples, and showed similar microfibril angles in compression and normal (opposite) wood. Significantly, bifluorescence measurements might also be used to understand the degree of local cellulose alignment within the cell wall, as opposed to variations in the overall cellulose angle.
    Matched MeSH terms: Pinus
  7. Fahimee J, Badrulisham AS, Zulidzham MS, Reward NF, Muzammil N, Jajuli R, et al.
    Insects, 2021 Feb 28;12(3).
    PMID: 33671045 DOI: 10.3390/insects12030205
    Honey quality is the main criterion used for evaluating honey production in the stingless bee Heterotrigona itama, and it is correlated with the plant species consumed as its main diet. The objective of this study was to obtain the metabarcode data from 12 populations of H. itama species throughout Malaysia (Borneo and Peninsular Malaysia) using the trnL marker. A total of 262 species under 70 families and five phyla of plants were foraged by H. itama in the studied populations. Spermatophyta and Magnoliophyta were recorded as the two most abundant phyla foraged, at 55.95% and 32.39%, respectively. Four species, Garcinia oblongifolia, Muntingia calabura, Mallotus pellatus, and Pinus squamata, occurred abundantly and were consumed by H. itama in all the populations. These data are considered as a fundamental finding that is specific to the diet of H. itama for strategizing the management of the domestication process specifically in a mono-cropping system and in a netted structure. Thus, based on these findings, we recommend Momordica charantia, Melastoma sp., and Cucumis sativa as the best choices of food plant species to be planted and utilized by H. itama in meliponiculture.
    Matched MeSH terms: Pinus
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links