Displaying all 9 publications

Abstract:
Sort:
  1. Abbasi A, Hosseini S, Somwangthanaroj A, Mohamad AA, Kheawhom S
    Int J Mol Sci, 2019 Jul 26;20(15).
    PMID: 31357565 DOI: 10.3390/ijms20153678
    Rechargeable zinc-air batteries are deemed as the most feasible alternative to replace lithium-ion batteries in various applications. Among battery components, separators play a crucial role in the commercial realization of rechargeable zinc-air batteries, especially from the viewpoint of preventing zincate (Zn(OH)42-) ion crossover from the zinc anode to the air cathode. In this study, a new hydroxide exchange membrane for zinc-air batteries was synthesized using poly (2,6-dimethyl-1,4-phenylene oxide) (PPO) as the base polymer. PPO was quaternized using three tertiary amines, including trimethylamine (TMA), 1-methylpyrolidine (MPY), and 1-methylimidazole (MIM), and casted into separator films. The successful synthesis process was confirmed by proton nuclear magnetic resonance and Fourier-transform infrared spectroscopy, while their thermal stability was examined using thermogravimetric analysis. Besides, their water/electrolyte absorption capacity and dimensional change, induced by the electrolyte uptake, were studied. Ionic conductivity of PPO-TMA, PPO-MPY, and PPO-MIM was determined using electrochemical impedance spectroscopy to be 0.17, 0.16, and 0.003 mS/cm, respectively. Zincate crossover evaluation tests revealed very low zincate diffusion coefficient of 1.13 × 10-8, and 0.28 × 10-8 cm2/min for PPO-TMA, and PPO-MPY, respectively. Moreover, galvanostatic discharge performance of the primary batteries assembled using PPO-TMA and PPO-MPY as initial battery tests showed a high specific discharge capacity and specific power of ~800 mAh/gZn and 1000 mWh/gZn, respectively. Low zincate crossover and high discharge capacity of these separator membranes makes them potential materials to be used in zinc-air batteries.
    Matched MeSH terms: Phenyl Ethers/chemistry*
  2. Ramu K, Kajiwara N, Sudaryanto A, Isobe T, Takahashi S, Subramanian A, et al.
    Environ Sci Technol, 2007 Jul 01;41(13):4580-6.
    PMID: 17695900
    Mussel samples were used in this study to measure the levels of polybrominated diphenyl ethers (PBDEs) and organochlorines (OCs) in the coastal waters of Asian countries like Cambodia, China, Hong Kong, India, Indonesia, Japan, Korea, Malaysia, the Philippines, and Vietnam. PBDEs were detected in all the samples analyzed, and the concentrations ranged from 0.66 to 440 ng/g lipid wt. Apparently higher concentrations of PBDEs were found in mussels from the coastal waters of Korea, Hong Kong, China, and the Philippines, which suggests that significant sources of these chemicals exist in and around this region. With regard to the composition of PBDE congeners, BDE-47, BDE-99, and BDE-100 were the dominant congeners in most of the samples. Among the OCs analyzed, concentrations of DDTs were the highest followed by PCBs > CHLs > HCHs > HCB. Total concentrations of DDTs, PCBs, CHLs, and HCHs in mussel samples ranged from 21 to 58 000, 3.8 to 2000, 0.93 to 900, and 0.90 to 230 ng/g lipid wt., respectively. High levels of DDTs were found in mussels from Hong Kong, Vietnam, and China; PCBs were found in Japan, Hong Kong, and industrialized/urbanized locations in Korea, Indonesia, the Philippines, and India; CHLs were found in Japan and Hong Kong; HCHs were found in India and China. These countries seem to play a role as probable emission sources of corresponding contaminants in Asia and, in turn, may influence their global distribution.
    Matched MeSH terms: Phenyl Ethers/analysis; Phenyl Ethers/metabolism*; Halogenated Diphenyl Ethers
  3. Batool T, Rasool N, Gull Y, Noreen M, Nasim FU, Yaqoob A, et al.
    PLoS One, 2014;9(12):e115457.
    PMID: 25545159 DOI: 10.1371/journal.pone.0115457
    A highly convenient method has been developed for the synthesis of (prop-2-ynyloxy) benzene and its derivatives. Differently substituted phenol and aniline derivatives were allowed to react with propargyl bromide in the presence of K2CO3 base and acetone as solvent. The compounds were synthesized in good yields (53-85%). Low cost, high yields and easy availability of compounds helped in the synthesis. Electron withdrawing groups favor the formation of stable phenoxide ion thus in turn favors the formation of product while electron donating groups do not favor the reaction. Phenol derivatives gave good yields as compared to that of aniline. As aprotic polar solvents favor SN2 type reactions so acetone provided best solvation for the reactions. K2CO3 was proved to be good for the synthesis. Antibacterial, Antiurease and NO scavenging activity of synthesized compounds were also examined. 4-bromo-2-chloro-1-(prop-2-ynyloxy)benzene 2a was found most active compound against urease enzyme with a percentage inhibition of 82.00±0.09 at 100 µg/mL with IC50 value of 60.2. 2-bromo-4-methyl-1-(prop-2-ynyloxy)benzene 2d was found potent antibacterial against Bacillus subtillus showing excellent inhibitory action with percentage inhibition of 55.67±0.26 at 100 µg/ml wih IC50 value of 79.9. Based on results, it can be concluded that some of the synthesized compounds may have potential antiurease and antibacterial effects against several harmful substances.
    Matched MeSH terms: Phenyl Ethers/chemical synthesis*; Phenyl Ethers/pharmacology
  4. Moh FM, Tang TS
    J AOAC Int, 1999 8 13;82(4):893-6.
    PMID: 10444829
    A rapid and direct liquid chromatographic (LC) technique is described for the determination of a eutectic mixture of diphenyl oxide and biphenyl such as Dowtherm A thermal heating fluid (THF) in oleochemicals and palm olein. Analysis is performed with an RP-18 column with fluorescence detection (excitation at 247 nm and emission at 310 nm). The isocratic mobile phase (1.0 mL/min) consists of methanol and water (90 + 10, v/v). A linear calibration model (correlation coefficient = 0.9999) was developed directly from used Dowtherm A THF with the biphenyl peak (4.70 min) as a marker. Average recoveries from spiked glycerin, fatty alcohol mixture, methyl ester mixture, fatty acids, and palm olein were 90.9-108.7%, with a detection limit of 0.1 microgram/mL. The technique requires no prior sample cleanup nor extraction steps and is good for quality assurance purposes.
    Matched MeSH terms: Phenyl Ethers/analysis*
  5. Kar SS, Bhat G V, Rao PP, Shenoy VP, Bairy I, Shenoy GG
    Drug Des Devel Ther, 2016;10:2299-310.
    PMID: 27486307 DOI: 10.2147/DDDT.S104037
    A series of triclosan mimic diphenyl ether derivatives have been synthesized and evaluated for their in vitro antitubercular activity against Mycobacterium tuberculosis H37Rv. The binding mode of the compounds at the active site of enoyl-acyl carrier protein reductase of M. tuberculosis has been explored. Among them, compound 10b was found to possess antitubercular activity (minimum inhibitory concentration =12.5 µg/mL) comparable to triclosan. All the synthesized compounds exhibited low levels of cytotoxicity against Vero and HepG2 cell lines, and three compounds 10a, 10b, and 10c had a selectivity index more than 10. Compound 10b was also evaluated for log P, pKa, human liver microsomal stability, and % protein binding, in order to probe its druglikeness. Based on the antitubercular activity and druglikeness profile, it may be concluded that compound 10b could be a lead for future development of antitubercular drugs.
    Matched MeSH terms: Phenyl Ethers/pharmacology*; Phenyl Ethers/chemistry*
  6. Hosseinzadeh M, Mohamad J, Khalilzadeh MA, Zardoost MR, Haak J, Rajabi M
    J. Photochem. Photobiol. B, Biol., 2013 Nov 5;128:85-91.
    PMID: 24077497 DOI: 10.1016/j.jphotobiol.2013.08.002
    The bark of Litsea costalis affords two new compounds named 4,4'-diallyl-5,5'-dimethoxy-[1,1'-biphennyl]-2,2'-diol, biseugenol A (1) and 2,2'-oxybis (4-allyl-1-methoxybenzene), biseugenol B (2) along with two known compounds (3-4), namely 5-methoxy-2-Hydroxy Benzaldehyde (3), and (E)-4-styrylphenol (4). The structures of 1 and 2 were determined using 1D and 2D NMR data. Also, the IR and NMR data were combined with quantum chemical calculations in the DFT approach using the hybrid B3LYP exchange-correlation function to confirm the structures of the compounds. Compounds showed fairly potent anticancer activity against cell lines and antioxidant (DPPH).
    Matched MeSH terms: Phenyl Ethers/isolation & purification; Phenyl Ethers/pharmacology*; Phenyl Ethers/chemistry*
  7. Kar SS, Bhat VG, Shenoy VP, Bairy I, Shenoy GG
    Chem Biol Drug Des, 2019 01;93(1):60-66.
    PMID: 30118192 DOI: 10.1111/cbdd.13379
    In our efforts to develop druggable diphenyl ethers as potential antitubercular agents, a series of novel diphenyl ether derivatives (5a-f, 6a-f) were designed and synthesized. The representative compounds showed promising in vitro activity against drug-susceptible, isoniazid-resistant, and multidrug-resistant strains of Mycobacterium tuberculosis with MIC values of 1.56 μg/ml (6b), 6.25 μg/ml (6a-d), and 3.125 μg/ml (6b-c), respectively. All the synthesized compounds exhibited satisfactory safety profile (CC50  > 300 μg/ml) against Vero and HepG2 cells. Reverse phase HPLC method was used to probe the physicochemical properties of the synthesized compounds. This series of compounds demonstrated comparatively low logP values. pKa values of representative compounds indicated that they were weak acids. Additionally, in vitro human liver microsomal stability assay confirmed that the synthesized compounds possessed acceptable stability under study conditions. The present study thus establishes compound 6b as the most promising antitubercular agent with acceptable drug-likeness.
    Matched MeSH terms: Phenyl Ethers
  8. Cheng Y, Lai OM, Tan CP, Panpipat W, Cheong LZ, Shen C
    ACS Appl Mater Interfaces, 2021 Jan 27;13(3):4146-4155.
    PMID: 33440928 DOI: 10.1021/acsami.0c17134
    Immobilization can be used to improve the stability of lipases and enhances lipase recovery and reusability, which increases its commercial value and industrial applications. Nevertheless, immobilization frequently causes conformational changes of the lipases, which decrease lipase catalytic activity. in the present work, we synthesized UIO-66 and grafted UIO-66 crystals with proline for immobilization of Candida rugosa lipase (CRL). As indicated by steady-state fluorescence microscopy, grafting of proline onto UIO-66 crystals induced beneficial conformational change in CRL. CRL immobilized on UIO-66/Pro (CRL@UIO-66/Pro) demonstrated higher enzyme activity and better recyclability than that immobilized on UIO-66 (CRL@UIO-66) in both hydrolysis (CRL@UIO-66/Pro: 0.34 U; CRL@UIO-66: 0.15 U) and transesterification (CRL@UIO-66/Pro: 0.93 U; CRL@UIO-66: 0.25 U) reactions. The higher values of kcat and kcat/Km of CRL@UIO-66/Pro also showed that it had better catalytic efficiency as compared to CRL@UIO-66. It is also worth noting that CRL@UIO-66/Pro (0.93 U) demonstrated a much higher transesterification activity as compared to free CRL (0.11 U), indicating that UIO-66/Pro has increased the solvent stability of CRL. Both CRL@UIO-66 and CRL@UIO-66/Pro were also used for the fabrication of biosensors for nitrofen with a wide linear range (0-100 μM), lower limit of detection, and good recovery rate.
    Matched MeSH terms: Phenyl Ethers/analysis*
  9. Verma R, Bairy I, Tiwari M, Bhat GV, Shenoy GG
    Mol Divers, 2019 Aug;23(3):541-554.
    PMID: 30430400 DOI: 10.1007/s11030-018-9889-1
    A series of novel 2-amino-4-(3-hydroxy-4-phenoxyphenyl)-6-(4-substituted phenyl) nicotinonitriles were synthesized and evaluated against HepG2, A-549 and Vero cell lines. Compounds 3b (IC50 16.74 ± 0.45 µM) and 3p (IC50 10.57 ± 0.54 µM) were found to be the most active compounds against A-549 cell line among the evaluated compounds. Further 3b- and 3p-induced apoptosis was characterized by AO/EB (acridine orange/ethidium bromide) nuclear staining method and also by DNA fragmentation study. A decrease in cell viability and initiation of apoptosis was clearly evident through the morphological changes in the A-549 cells treated with 3b and 3p when stained with this method. Fragmentation of DNA into nucleosomes was observed which further confirmed the cell apoptosis in cells treated with compound 3b. Flow cytometry studies confirmed the cell cycle arrest at G2/M phase in A549 cells treated with compound 3b. Further in silico studies performed supported the in vitro anticancer activity of these compounds as depicted by dock score and binding energy values.
    Matched MeSH terms: Phenyl Ethers/chemistry*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links