Displaying all 16 publications

Abstract:
Sort:
  1. Khairi NA, Yusof NA, Abdullah AH, Mohammad F
    Int J Mol Sci, 2015;16(5):10562-77.
    PMID: 26006226 DOI: 10.3390/ijms160510562
    In recent years, molecularly-imprinted polymers (MIPs) have attracted the attention of several researchers due to their capability for molecular recognition, easiness of preparation, stability and cost-effective production. By taking advantage of these facts, Hg(II) imprinted and non-imprinted copolymers were prepared by polymerizing mercury nitrate stock solution (or without it) with methacrylic acid (MAA), 2-hydroxyl ethyl methacrylate (HEMA), methanol and ethylene glycol dimethacrylate (EGDMA) as the monomer, co-monomer solvent (porogen) and cross-linker, respectively. Thus, the formed Hg(II) imprinted polymer was characterized by using Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), Brunauer, Emmett and Teller (BET) and thermal gravimetric analysis (TGA). The separation and preconcentration characteristics of Hg(II) imprinted polymer were investigated by solid phase extraction (SPE) procedures, and an optimal pH of 7 was investigated as ideal. The specific surface area of the Hg(II) imprinted polymer was found to be 19.45 m2/g with a size range from 100 to 140 µm in diameter. The maximum adsorption capacity was observed to be 1.11 mg/g of Hg(II) imprinted beads with 87.54% removal of Hg(II) ions within the first 5 min. The results of the study therefore confirm that the Hg(II) imprinted polymer can be used multiple times without significantly losing its adsorption capacity.
    Matched MeSH terms: Petroleum/analysis*
  2. Mohebbi-Nozar SL, Zakaria MP, Ismail WR, Mortazawi MS, Salimizadeh M, Momeni M, et al.
    Mar Pollut Bull, 2015 Jun 15;95(1):407-11.
    PMID: 25843439 DOI: 10.1016/j.marpolbul.2015.03.037
    To provide baseline information for the marine ecosystem of Hormozgan province, the distribution of petroleum hydrocarbons was evaluated in 52 stations involved in the mangrove and coastline ecosystem. Coastline sampling sites included areas facing harbor, river, domestic and industrial discharge. Sediment samples were analyzed based on ultraviolet fluorescence spectroscopy. Petroleum hydrocarbons showed narrow variations ranging from non-detectable (ND) to 1.71 and from 0.2 to 0.63μg/g dry weight for coastline and mangrove sediments, respectively. The detected concentrations for total petroleum hydrocarbons were lower than guideline values for ecological risk. Furthermore, the minimum environmental risk was confirmed by background levels for the Persian Gulf, the Sea of Oman, and detected values for reference areas. The results were regarded as background data in the studied area, and, considering the rapid expansion of activities related to the petroleum industry in Hormozgan province, the continuous monitoring of pollutants is recommended.
    Matched MeSH terms: Petroleum/analysis*
  3. Abdullah AR, Woon WC, Bakar RA
    Bull Environ Contam Toxicol, 1996 Jul;57(1):155-62.
    PMID: 8661474
    Matched MeSH terms: Petroleum/analysis*
  4. Lakshmanan S, Yung YL
    PMID: 33596165 DOI: 10.1080/19440049.2020.1842516
    Chloride reduction in crude palm oil (CPO) of greater than 80% was achieved with water washing conducted at 90°C. Inorganic chloride content in CPO was largely removed through washing, with no significant reduction in the organic chloride. Phosphorous content of CPO reduced by 20%, while trace elements such as calcium, magnesium and iron were also reduced in the washing operation. The 3-MCPDE formed in the refined, bleached and deodorised palm oil displayed (RBDPO) a linear relationship with the chloride level in washed CPO, which could be represented by the equation y = 0.91x, where y is 3-MCPDE and x represents the chloride in RBDPO refined from washed CPO. In plant scale trials using 5% water at 90°C, mild acidification of the wash water at 0.05% reduced chloride by average 76% in washed CPO. Utilising selected bleaching earths, controlled wash water temperature and wash water volume produced low chloride levels in RBDPO. Chloride content less than 1.4 mg kg-1 in plant RBDPO production was achieved, through physical refining of washed CPO containing less than 2 mg kg-1 chloride and would correspond to 3-MCPDE levels of 1.25 mg kg-1 in RBDPO. The 3-MCPDE reduced further to 1.1 mg kg-1 as the chloride level of washed CPO decreased below 1.8 mg kg-1. Chloride has been shown to facilitate the 3-MCPDE formation and its removal in lab scale washing study has yielded lower 3-MCPDE levels formed in RBDPO. In actual plant operations using washed CPO, 3-MCPDE levels below 1.25 mg kg-1 were achieved consistently in RBDPO.
    Matched MeSH terms: Petroleum/analysis*
  5. Mat-Shayuti MS, Tuan Ya TMYS, Abdullah MZ, Megat Khamaruddin PNF, Othman NH
    Environ Sci Pollut Res Int, 2019 Sep;26(26):26419-26438.
    PMID: 31327143 DOI: 10.1007/s11356-019-05954-w
    Steady efforts in using ultrasonic energy to treat oil-contaminated sand started in the early 2000s until today, although pilot studies on the area can be traced to even earlier dates. Owing to the unique characteristics of the acoustic means, the separation of oil from sand has been showing good results in laboratories. This review provides the compilation of researches and insights into the mechanism of separation thus far. Related topics in the areas of oil-contaminated sand characterizations, fundamental ultrasonic cleaning, and cavitation effects are also addressed. Nevertheless, many of the documented works are only at laboratory or pilot-scale level, and the comprehensive interaction between ultrasonic parameters towards cleaning efficiencies may not have been fully unveiled. Gaps and opportunities are also presented at the end of this article.
    Matched MeSH terms: Petroleum/analysis*
  6. Keshavarzifard M, Zakaria MP, Hwai TS, Yusuff FF, Mustafa S, Vaezzadeh V, et al.
    Mar Pollut Bull, 2014 Nov 15;88(1-2):366-72.
    PMID: 25173594 DOI: 10.1016/j.marpolbul.2014.08.014
    In this study, the surface sediments of the Malacca and Prai Rivers were analyzed to identify the distributions, and sources of Polycyclic Aromatic Hydrocarbons (PAHs). The total PAH concentrations varied from 716 to 1210 and 1102 to 7938 ng g(-1)dw in the sediments of the Malacca and Prai Rivers, respectively. The PAH concentrations can be classified as moderate and high level of pollution in the sediments of the Malacca and Prai Rivers, respectively. The comparison of PAHs with the Sediment Quality Guidelines (SQGs) indicates that the PAHs in the sediments of the Malacca and Prai Rivers may have the potential to cause adverse toxicity effects on the sampled ecosystems. The diagnostic ratios of individual PAHs indicate both petrogenic- and pyrogenic-origin PAHs with dominance of pyrogenic source in both rivers. These findings demonstrate that the environmental regulations in Malaysia have effectively reduced the input of petrogenic petroleum hydrocarbons into rivers.
    Matched MeSH terms: Petroleum/analysis
  7. Suratman S, Tahir NM, Latif MT
    Bull Environ Contam Toxicol, 2012 May;88(5):755-8.
    PMID: 22392007 DOI: 10.1007/s00128-012-0574-2
    The distribution of total petrogenic hydrocarbon was investigated in the subsurface water of Setiu Wetland from July to October 2008. The concentration was quantified by UV-fluorescence spectroscopy and ranged from 4 to 121 μg/L (mean 60 ± 41 μg/L). Higher total petrogenic hydrocarbon concentrations were found in area with high boating activities suggesting that the contribution is likely related to fossil fuel combustion. The present study also revealed that the total petrogenic hydrocarbon values are still lower that those reported in Malaysian coastal waters.
    Matched MeSH terms: Petroleum/analysis*
  8. Olutoye MA, Hameed BH
    Bioresour Technol, 2011 Jun;102(11):6392-8.
    PMID: 21486692 DOI: 10.1016/j.biortech.2011.03.039
    The synthesis of fatty acid methyl esters (FAME) as a substitute to petroleum diesel was investigated in this study from crude jatropha oil (CJO), a non-edible, low-cost alternative feedstock, using aluminium modified heterogeneous basic oxide (Mg-Zn) catalyst. The transesterification reaction with methanol to methyl esters yielded 94% in 6h with methanol-oil ratio of 11:1, catalyst loading of 8.68 wt.% at 182°C and the properties of CJO fuel produced were determine and found to be comparable to the standards according to ASTM. In the range of experimental parameters investigated, it showed that the catalyst is selective to production of methyl esters from oil with high free fatty acid (FFA) and water content of 7.23% and 3.28%, respectively in a single stage process. Thus, jatropha oil is a promising feedstock for methyl ester production and large scale cultivation will help to reduce the product cost.
    Matched MeSH terms: Petroleum/analysis*
  9. Zahed MA, Aziz HA, Isa MH, Mohajeri L, Mohajeri S
    Bioresour Technol, 2010 Dec;101(24):9455-60.
    PMID: 20705460 DOI: 10.1016/j.biortech.2010.07.077
    To determine the influence of nutrients on the rate of biodegradation, a five-level, three-factor central composite design (CCD) was employed for bioremediation of seawater artificially contaminated with crude oil. Removal of total petroleum hydrocarbons (TPH) was the dependent variable. Samples were extracted and analyzed according to US-EPA protocols. A significant (R(2)=0.9645, P<0.0001) quadratic polynomial mathematical model was generated. Removal from samples not subjected to optimization and removal by natural attenuation were 53.3% and 22.6%, respectively. Numerical optimization was carried out based on desirability functions for maximum TPH removal. For an initial crude oil concentration of 1g/L supplemented with 190.21 mg/L nitrogen and 12.71 mg/L phosphorus, the Design-Expert software predicted 60.9% hydrocarbon removal; 58.6% removal was observed in a 28-day experiment.
    Matched MeSH terms: Petroleum/analysis*
  10. Agamuthu P, Abioye OP, Aziz AA
    J Hazard Mater, 2010 Jul 15;179(1-3):891-4.
    PMID: 20392562 DOI: 10.1016/j.jhazmat.2010.03.088
    Soil contamination by used lubricating oil from automobiles is a growing concern in many countries, especially in Asian and African continents. Phytoremediation of this polluted soil with non-edible plant like Jatropha curcas offers an environmental friendly and cost-effective method for remediating the polluted soil. In this study, phytoremediation of soil contaminated with 2.5 and 1% (w/w) waste lubricating oil using J. curcas and enhancement with organic wastes [Banana skin (BS), brewery spent grain (BSG) and spent mushroom compost (SMC)] was undertaken for a period of 180 days under room condition. 56.6% and 67.3% loss of waste lubricating oil was recorded in Jatropha remediated soil without organic amendment for 2.5% and 1% contamination, respectively. However addition of organic waste (BSG) to Jatropha remediation rapidly increases the removal of waste lubricating oil to 89.6% and 96.6% in soil contaminated with 2.5% and 1% oil, respectively. Jatropha root did not accumulate hydrocarbons from the soil, but the number of hydrocarbon utilizing bacteria was high in the rhizosphere of the Jatropha plant, thus suggesting that the mechanism of the oil degradation was via rhizodegradation. These studies have proven that J. curcas with organic amendment has a potential in reclaiming hydrocarbon-contaminated soil.
    Matched MeSH terms: Petroleum/analysis
  11. Mizzouri NSh, Shaaban MG
    J Hazard Mater, 2013 Apr 15;250-251:333-44.
    PMID: 23474407 DOI: 10.1016/j.jhazmat.2013.01.082
    This study analyzes the effects of toxic, hydraulic, and organic shocks on the performance of a lab-scale sequencing batch reactor (SBR) with a capacity of 5L. Petroleum refinery wastewater (PRWW) was treated with an organic loading rate (OLR) of approximately 0.3 kg chemical oxygen demand (COD)/kg MLSSd at 12.8h hydraulic retention time (HRT). A considerable variation in the COD was observed for organic, toxic, hydraulic, and combined shocks, and the worst values observed were 68.9, 77.1, 70.2, and 57.8%, respectively. Improved control of toxic shock loads of 10 and 20mg/L of chromium (VI) was identified. The system was adversely affected by the organic shock when a shock load thrice the normal value was used, and this behavior was repeated when the hydraulic shock was 4.8h HRT. The empirical recovery period was greater than the theoretical period because of the inhibitory effects of phenols, sulfides, high oil, and grease in the PRWW. The system recovery rates from the shocks were in the following order: toxic, organic, hydraulic, and combined shocks. System failure occurred when the combined shocks of organic and hydraulic were applied. The system was resumed by replacing the PRWW with glucose, and the OLR was reduced to half its initial value.
    Matched MeSH terms: Petroleum/analysis*
  12. Zakaria MP, Okuda T, Takada H
    Mar Pollut Bull, 2001 Dec;42(12):1357-66.
    PMID: 11827123
    Malaysian coasts are subjected to various threats of petroleum pollution including routine and accidental oil spill from tankers, spillage of crude oils from inland and off-shore oil fields, and run-off from land-based human activities. Due to its strategic location, the Straits of Malacca serves as a major shipping lane. This paper expands the utility of biomarker compounds, hopanes, in identifying the source of tar-balls stranded on Malaysian coasts. 20 tar-ball samples collected from the east and west coast were analyzed for hopanes and polycyclic aromatic hydrocarbons (PAHs). Four of the 13 tar-ball samples collected from the west coast of Peninsular Malaysia were identified as the Middle East crude oil (MECO) based on their biomarker signatures, suggesting tanker-derived sources significantly contributing the petroleum pollution in the Straits of Malacca. The tar-balls found on the east coast seem to originate from the offshore oil platforms in the South China Sea. The presence of South East Asian crude oil (SEACO) tar-balls on the west coast carry several plausible explanations. Some of the tar-balls could have been transported via sea currents from the east coast. The tankers carrying SEACO to other countries could have accidentally spilt the oil as well. Furthermore, discharge of tank washings and ballast water from the tankers were suggested based on the abundance in higher molecular weight n-alkanes and the absence of unresolved complex mixture (UCM) in the tar-ball samples. The other possibilities are that the tar-balls may have been originated from the Sumatran oil fields and spillage of domestic oil from oil refineries in Port Dickson and Malacca. The results of PAHs analysis suggest that all the tar-ball samples have undergone various extent of weathering through evaporation, dissolution and photooxidation.
    Matched MeSH terms: Petroleum/analysis
  13. Zakaria MP, Takada H, Tsutsumi S, Ohno K, Yamada J, Kouno E, et al.
    Environ Sci Technol, 2002 May 1;36(9):1907-18.
    PMID: 12026970
    This is the first publication on the distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in riverine and coastal sediments in South East Asia where the rapid transfer of land-based pollutants into aquatic environments by heavy rainfall and runoff waters is of great concern. Twenty-nine Malaysian riverine and coastal sediments were analyzed for PAHs (3-7 rings) by gas chromatography mass spectrometry. Total PAHs concentrations in the sediment ranged from 4 to 924 ng/g. Alkylated homologues were abundant for all sediment samples. The ratio of the sum of methylphenanthrenes to phenanthrene (MP/P), an index of petrogenic PAHs contribution, was more than unity for 26 sediment samples and more than 3 for seven samples for urban rivers covering a broad range of locations. The MP/P ratio showed a strong correlation with the total PAHs concentrations, with an r2 value of 0.74. This ratio and all other compositional features indicated that Malaysian urban sediments are heavily impacted by petrogenic PAHs. This finding is in contrast to other studies reported in many industrialized countries where PAHs are mostly of pyrogenic origin. The MP/P ratio was also significantly correlated with higher molecular weight PAHs such as benzo[a]pyrene, suggesting unique PAHs source in Malaysia which contains both petrogenic PAHs and pyrogenic PAHs. PAHs and hopanes fingerprints indicated that used crankcase oil is one of the major contributors of the sedimentary PAHs. Two major routes of inputs to aquatic environments have been identified: (1) spillage and dumping of waste crankcase oil and (2) leakage of crankcase oils from vehicles onto road surfaces, with the subsequent washout by street runoff. N-Cyclohexyl-2-benzothiazolamine (NCBA), a molecular marker of street dust, was detected in the polluted sediments. NCBA and other biomarker profiles confirmed our hypothesis of the input from street dust contained the leaked crankcase oil. The fingerprints excluded crude oil, fresh lubricating oil, asphalt, and tire-particles as major contributors.
    Matched MeSH terms: Petroleum/analysis*
  14. Ismail A, Toriman ME, Juahir H, Kassim AM, Zain SM, Ahmad WKW, et al.
    Mar Pollut Bull, 2016 Oct 15;111(1-2):339-346.
    PMID: 27397593 DOI: 10.1016/j.marpolbul.2016.06.089
    Extended use of GC-FID and GC-MS in oil spill fingerprinting and matching is significantly important for oil classification from the oil spill sources collected from various areas of Peninsular Malaysia and Sabah (East Malaysia). Oil spill fingerprinting from GC-FID and GC-MS coupled with chemometric techniques (discriminant analysis and principal component analysis) is used as a diagnostic tool to classify the types of oil polluting the water. Clustering and discrimination of oil spill compounds in the water from the actual site of oil spill events are divided into four groups viz. diesel, Heavy Fuel Oil (HFO), Mixture Oil containing Light Fuel Oil (MOLFO) and Waste Oil (WO) according to the similarity of their intrinsic chemical properties. Principal component analysis (PCA) demonstrates that diesel, HFO, MOLFO and WO are types of oil or oil products from complex oil mixtures with a total variance of 85.34% and are identified with various anthropogenic activities related to either intentional releasing of oil or accidental discharge of oil into the environment. Our results show that the use of chemometric techniques is significant in providing independent validation for classifying the types of spilled oil in the investigation of oil spill pollution in Malaysia. This, in consequence would result in cost and time saving in identification of the oil spill sources.
    Matched MeSH terms: Petroleum/analysis*
  15. Al-Madhagi WM, Hashim NM, Awadh Ali NA, Taha H, Alhadi AA, Abdullah AA, et al.
    J Chem Inf Model, 2019 05 28;59(5):1858-1872.
    PMID: 31117526 DOI: 10.1021/acs.jcim.8b00969
    Bioassay-guided isolation protocol was performed on petroleum ether extract of Peperomia blanda (Jacq.) Kunth using column chromatographic techniques. Five compounds were isolated and their structures were elucidated via one-dimensional (1D) and two-dimensional (2D) NMR, gas chromatography mass sectroscopy (GCMS), liquid chromatography mass spectroscopy (LCMS), and ultraviolet (UV) and infrared (IR) analyses. Dindygulerione E (a new compound), and two compounds isolated from P. blanda for the first time-namely, dindygulerione A and flavokawain A-are reported herein. Antimicrobial activity was screened against selected pathogenic microbes, and minimum inhibitory concentrations (MIC) were recorded within the range of 62-250 μg/mL. Assessment of the pharmacotherapeutic potential has also been done for the isolated compounds, using the Prediction of Activity spectra for Substances (PASS) software, and different activities of compounds were predicted. Molecular docking, molecular dynamics simulation and molecular mechanics/Poisson-Boltzmann Surface Area (MM-PBSA) calculations have proposed the binding affinity of these compounds toward methylthioadenosine phosphorylase enzyme, which may explain their inhibitory actions.
    Matched MeSH terms: Petroleum/analysis
  16. Ismail S, Dadrasnia A
    PLoS One, 2015;10(4):e0120931.
    PMID: 25875763 DOI: 10.1371/journal.pone.0120931
    Environmental contamination by petroleum hydrocarbons, mainly crude oil waste from refineries, is becoming prevalent worldwide. This study investigates the bioremediation of water contaminated with crude oil waste. Bacillus salamalaya 139SI, a bacterium isolated from a private farm soil in the Kuala Selangor in Malaysia, was found to be a potential degrader of crude oil waste. When a microbial population of 108 CFU ml-1 was used, the 139SI strain degraded 79% and 88% of the total petroleum hydrocarbons after 42 days of incubation in mineral salt media containing 2% and 1% of crude oil waste, respectively, under optimum conditions. In the uninoculated medium containing 1% crude oil waste, 6% was degraded. Relative to the control, the degradation was significantly greater when a bacteria count of 99 × 108 CFU ml-1 was added to the treatments polluted with 1% oil. Thus, this isolated strain is useful for enhancing the biotreatment of oil in wastewater.
    Matched MeSH terms: Petroleum/analysis*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links