Displaying publications 1 - 20 of 21 in total

Abstract:
Sort:
  1. Ali TG, Abdul Keyon AS, Mahat NA
    Environ Sci Pollut Res Int, 2022 Jan;29(4):4803-4821.
    PMID: 34775561 DOI: 10.1007/s11356-021-17343-3
    Despite the nutritional benefits, bivalves like mussels are also an excellent aquatic heavy metal biomonitoring agent due to their high tolerance to varying levels of temperature, salinity and oxygen, as well as pollutants. Although the accumulated toxic heavy metals may not exert direct negative impacts on the mussels, such toxicants in mussel tissues can give harmful effects on human body when consumed in toxic quantities and/or over prolonged period. The booming of urban and industrial activities, and consequently the increment of runoffs, as well as wastewater effluents and leaching, further exacerbated the magnitude of this issue. Hence, continuous monitoring of heavy metal contents in mussels is vital to ensure its compliance with food safety regulations, protecting consumers at large. This review paper discusses the occurrence of heavy metals in mussels especially that of Perna viridis in Malaysia and other parts of the world since year 2000 until 2021. Heavy metal concentration data and patterns from various coastal and/or estuaries were compared. Where applicable, statistical data that indicate variations between sampling sites, sampling months or years and chemical treatments for heavy metal removal were critically reviewed. Health risk assessment findings were also discussed. More importantly, related chemical-based interventions to minimize and/or eliminate toxic heavy metals from mussels are also reviewed.
    Matched MeSH terms: Perna*
  2. Ong CC, Teh CH, Tan SG, Yusoff K, Yap CK
    Genetika, 2008 Apr;44(4):574-6.
    PMID: 18666563
    We report on the characterization of 11 polymorphic microsatellite loci in P. viridis, the first set of such markers developed and characterized for this species. The number of alleles per locus ranged from 2 to 7, whereas the observed heterozygosity ranged from 0.0447 to 0.4837. These markers should prove useful as powerful genetic markers for this species.
    Matched MeSH terms: Perna/genetics*
  3. Irnidayanti Y, Soegianto A, Brabo AH, Abdilla FM, Indriyasari KN, Rahmatin NM, et al.
    Environ Monit Assess, 2023 Jun 26;195(7):884.
    PMID: 37358711 DOI: 10.1007/s10661-023-11535-9
    The Jakarta Bay is the estuary for thirteen rivers that flow through densely populated and industrialized upstream regions. This condition has the potential to pollute the Jakarta Bay with microplastics that are transported from the upstream river. Meanwhile, people, particularly fishermen, continue to use Jakarta Bay for fishing and aquaculture. This study examined microplastics (MP) abundance in the whole tissues of green mussels (Perna viridis) grown in Jakarta Bay, Indonesia, and their health risks. MP was identified in all 120 green mussels, with fiber > film > fragment being the most common kinds. The abundance of fiber was 19 items/g of tissue, whereas the abundances of fragments and film were 14.5 items/g and 15 item/g, respectively. Fourier transform infrared spectroscopy tests on MP from the tissues of green mussels showed that there were 12 different types of MP polymers. The estimated amount of MP that humans consume each year varied from 29,120 MP items/year to 218,400 MP items/year for different age groups. Based on the total mean number of MP found in the tissues of green mussels and the amount of shellfish consumed per person in Indonesia, it was estimated that people ate 775,180 MP through shellfish each year.
    Matched MeSH terms: Perna*
  4. Normah, I., Siti Hafsah, M.S., Nurul Izzaira, A.
    MyJurnal
    Green mussel (Perna viridis) was hydrolysed with alcalase under two different conditions consisting of pH7, E/S5% or pH 9, E/S 3% at 60°C for two hours. Hydrolysis at pH 9, E/S3% resulted in a higher degree of hydrolysis (DH) than pH7, E/S5% with degree of hydrolysis of 37.00% and 28.33%, respectively. The green mussel hydrolysates were characterized by molecular weight of
    Matched MeSH terms: Perna
  5. Zakaria, M.P., Yap, C.K., Eugene Ng, Y.J., Tan, S.G.
    MyJurnal
    In this study, a polluted site at Kg. Pasir Puteh was assessed for heavy metal pollution by using
    transplanted caged mussel (Perna viridis) from a relatively clean population, Sg. Melayu; both are located in the Strait of Johore. For control purposes, the P. viridis from Kg. Pasir Puteh were also simultaneously transplanted in Sg. Melayu at the same time. It was found that Zn was the metal which got accumulated fastest in the transplanted mussel while Cd was the slowest. This study indicated that the byssus of Perna viridis was most effective for biomonitoring of Cd, Ni, Pb and Zn, while the shell could be used for the biomonitoring of Cu, Ni and Pb and the total soft tissue for the biomonitoring of Ni since they were able to accumulate and eliminate the respective metals well. By using mussel as a biomonitor, the present study found that Kg. Pasir Puteh, which is located in the eastern part of the Strait of Johore, had significantly higher contamination and bioavailabilities of Cd, Cu, Fe, Ni, Pb and Zn. Therefore, the use of the transplanted caged mussels is very useful for heavy metal assessment purposes since it can increase the validity of data interpretation by minimizing ecological factors.
    Matched MeSH terms: Perna
  6. Ong CC, Yusoff K, Yap CK, Tan SG
    J Genet, 2009 Aug;88(2):153-63.
    PMID: 19700853
    A total of 19 polymorphic microsatellite loci were used to analyse levels of genetic variation for 10 populations of Perna viridis L. collected from all over peninsular Malaysia. The populations involved in this study included Pulau Aman in Penang, Tanjung Rhu in Kedah, Bagan Tiang in Perak, Pulau Ketam in Selangor, Muar, Parit Jawa, Pantai Lido and Kampung Pasir Puteh in Johore, and Kuala Pontian and Nenasi in Pahang state. The number of alleles per locus ranged from two to seven, with an average of 3.1. Heterozygote deficiencies were observed across all the 10 populations. Characterization of the populations revealed that local populations of P. viridis in peninsular Malaysia were genetically similar enough to be used as a biomonitoring agent for heavy metal contamination in the Straits of Malacca. Cluster analysis grouped the P. viridis populations according to their geographical distributions with the exception of Parit Jawa. The analysis also revealed that P. viridis from the northern parts of peninsular Malaysia were found to be the most distant populations among the populations of mussels investigated and P. viridis from the eastern part of peninsular Malaysia were closer to the central and southern populations than to the northern populations.
    Matched MeSH terms: Perna/genetics*
  7. Al-Barwani SM, Arshad A, Amin SMN, Rahman A
    J Environ Biol, 2016 07;37(4 Spec No):705-8.
    PMID: 28779729
    The condition index (which relates to the tissue dry weight to shell volume) of the green-lipped mussel Perna viridis was investigated at Sebatu in Melaka and Pasir Panjang in Negri Sembilan from September 2003 to February 2004. Monthly samples of P. viridis were collected from culturing rafts at both sites. Variations in the average monthly condition index (CI) of P. viridis ranged from 21.06 to 26.72 g cm(-3) and 15.18 to 19.41 g cm(-3) in Sebatu and Pasir Panjang, respectively. Salinity values were lowest in November between 27.93 to 28.10 ppt in Sebatu and Pasir Panjang, respectively. Salinity then started increasing gradually until it reached 33.26 ppt in Sebatu and 31.23 ppt in Pasir Panjang in the month of February. Chlorophylla in Pasir Panjang showed higher fluctuation, ranging from 2.93 to 14.39 mg/L, while in Sebatu the fluctuations were lower and ranged between 7.70 and 9.37 mg l(-1). Rapid decline in CI values were recorded during January in Sebatu and February in Pasir Panjang. However, this rapid declining state of CI in P. viridis was an indication of its spawning period, when their gametes were released in the water column. These findings would help in the development of captive breeding techniques and mass seed production in aquaculture.
    Matched MeSH terms: Perna/physiology*
  8. Yap, C.K., Ismail, A., Tan, S.G.
    MyJurnal
    The concentrations of cadmium, copper, zinc and lead, in the total soft tissues of green-lipped mussel Perna viridis of a wide range of sizes (2-11 cm), were determined from a population at Pasir Panjang. The metal contents (μg per individual) and concentrations (μg per g) of cadmium, lead, copper and zinc were studied in P. viridis to find the relationships with body sizes. Smaller and younger mussels showed higher concentrations (μg per g) of Cd, Pb and Zn than the larger and older ones. The results of the present study showed that the plotting of the metal content, against dry body flesh weight on a double logarithmic basis, gave good positive straight lines; this observation is in agreement with Boyden’s formula (1977). This indicated that P. viridis showed a different physiological strategy for each metal being studied, which is related to age.
    Matched MeSH terms: Perna
  9. Yap C, Tan S
    Sains Malaysiana, 2011;40:1179-1186.
    The periostracum is the outermost layer overlying the inner prismatic and nacreous layers of the shells of bivalves. In the present study, the distributions of Cd and Pb in the soft tissues (ST) and periostracum of the green-lipped mussel Perna viridis sampled from 15 sampling sites in the coastal waters of Peninsular Malaysia were determined. The concentrations of Cd (0.21-10.87 mg/g dry weight) and Pb (1.16-40.20 mg/g dry weight) in the periostracum were generally higher than those in the ST (Cd: 0.10-5.55 mg/g dry weight; Pb: 2.53-18.62 mg/g dry weight). Based on correlation analysis from nine geographical populations, the higher correlation coefficients (R values) between the periostracum-geochemical fractions of the sediments than between the ST-geochemical fractions of the sediments indicated that the periostracum could be a potential biomonitoring material for Pb. Hence, the present results supported the use of the periostracum of P. viridis as a potential biomonitoring material for Pb but not for Cd. However, more studies are warranted to verify its usefulness for the biomonitoring of heavy metal pollution in tropical coastal waters.
    Matched MeSH terms: Perna
  10. Yap C, Al-Barwani S
    Sains Malaysiana, 2012;41:1063-1069.
    This study compared some allometric parameters (shell length, shell width, shell height, total dry weight of soft tissues, condition index and heavy metals (Cd, Cu, Pb and Zn) in the different soft tissues of Perna viridis collected from Sebatu and Muar estuary. It was found that the total dry weight of soft tissues and condition index of mussels collected from Sebatu were significantly (p<0.05) higher than those in Muar. The significantly (p<0.05) higher concentrations of Cu in most soft tissues and some of Cd indicated a higher bioavailability of Cu and Cd at Muar than Sebatu. In addition, the significantly (p<0.05) higher levels of Cu, Cd, Zn and Pb in surface sediments collected from Muar supported the observable anthropogenic impacts at Muar than Sebatu and hence, higher metal contamination at Muar than Sebatu. The higher condition index value in mussels recorded in Sebatu than in Muar was believed to be a result of higher metal contamination at Muar estuary.
    Matched MeSH terms: Perna
  11. Yap CK, Chua BH, Teh CH, Tan SG, Ismail A
    Genetika, 2007 May;43(5):668-74.
    PMID: 17633561
    Genetic variation due to heavy metal contamination has always been an interesting topic of study. Because of the numerous contaminants being found in coastal and intertidal waters, there is always much discussion and argument as to which contaminant(s) caused the variations in the genetic structures of biomonitors. This study used a Single Primer Amplification Reaction (SPAR) technique namely Random Amplified Polymorphic DNA (RAPD) to determine the genetic diversity of the populations of the green-lipped mussel Perna viridis collected from a metal-contaminated site at Kg. Pasir Puteh and those from four relatively' uncontaminated sites (reference sites). Heavy metal levels (Cd, Cu, Pb and Zn) were also measured in the soft tissues and byssus of the mussels from all the sites. Cluster analyses employing UPGMA done based on the RAPD makers grouped the populations into two major clusters; the Bagan Tiang, Pantai Lido, Pontian and Kg. Pasir Puteh populations were in one cluster, while the Sg. Belungkor population clustered by itself. This indicated that the genetic diversity based on bands resulting from the use of all four RAPD primers on P. viridis did not indicate its potential use as a biomarker of heavy metal pollution in coastal waters. However, based on a correlation analysis between a particular metal and a band resulting from a specific RAPD primer revealed some significant (P < 0.01) correlations between the primers and the heavy metal concentrations in the byssus and soft tissues. Thus, the correlation between a particular metal and the bands resulting from the use of a specific RAPD primer on P. viridis could be used as biomonitoring tool of heavy metal pollution.
    Matched MeSH terms: Perna/genetics*; Perna/chemistry*
  12. Yap CK, Ismail A, Cheng WH, Tan SG
    Ecotoxicol Environ Saf, 2006 Mar;63(3):413-23.
    PMID: 16406592
    The concentrations of Cu, Pb, and Zn in the crystalline style (CS) and in the remaining soft tissues (ST) of the green-lipped mussel Perna viridis from 10 geographical sites along the coastal waters off peninsular Malaysia were determined. The CS, compared with the remaining ST, accumulated higher levels of Cu in both contaminated and uncontaminated samples, indicating that the style has a higher affinity for the essential Cu to bind with metallothioneins. The similar pattern of Cu accumulation in the different ST of mussels collected from clean and Cu-contaminated sites indicated that the detoxification capacity of the metallothioneins had not been overloaded. For Pb, higher levels of the metal in the CS than in the remaining ST were found only in mussels collected from a contaminated site at Kg. Pasir Puteh. This indicated a tissue redistribution of Pb due to its binding to metallothioneins for Pb detoxification and the potential of the CS as an indicator organ of Pb bioavailability and contamination. For Zn, the above two phenomena were not found since no obvious patterns were observed (lower levels of Zn in the CS than in the remaining ST) in contaminated and uncontaminated samples due to the mechanism of partial regulation. Generally, all the different STs studied (foot, mantle, gonad, CS, gill, muscle, and byssus) are good biomonitoring tissues for Cu and Pb bioavailabilities and contamination. Among these organs, the CS was found to be the best organ for biomonitoring Cu. The present data also suggest the use of the tissue redistribution of Pb in P. viridis as an indicator of Pb bioavailability and contamination in coastal waters.
    Matched MeSH terms: Perna/anatomy & histology; Perna/metabolism*
  13. Kamaruzzaman BY, Ong MC, Zaleha K, Shahbudin S
    Pak J Biol Sci, 2008 Sep 15;11(18):2249-53.
    PMID: 19137835
    Muscle and feather in tissue of 40 juveniles and 40 adult green-lipped mussel Perna veridis (L.) collected from Muar Estuary, Johor were analyzed for copper (Cu), cadmium (Cd), lead (Pb) and zinc (Zn) concentration using a fast and sensitive Inductively Coupled Plasma Mass Spectrometer (ICP-MS). In this study, the average concentration of Cu was 8.96 microg g(-1) dry weights, Cd with 0.58 microg g(-1) dry weight, Pb averaging 2.28 microg g(-1) dry weights and Zn averaged to 86.73 microg g(-1) dry weight. The highest accumulation of metal studied was found in feather sample compared to the muscle. The positive relationship of Cu, Cd, Pb and Zn with P. virdis length suggesting that the accumulation of these metals were formed in the mussel. In all cases, metal levels found were lower than the guideline of international standards of reference and the examined bivalve were not associated with enhanced metal content in their tissues and were safe within the limits for human consumption.
    Matched MeSH terms: Perna/metabolism; Perna/chemistry*
  14. Abdullah N, Tair R, Abdullah MH
    Pak J Biol Sci, 2014 Jan 01;17(1):62-7.
    PMID: 24783779
    Perna viridis (P. viridis) has been identified as a good biological indicator in identifying environmental pollution, especially when there are various types of Heavy Metals Accumulations (HMA) inside its tissue. Based on the potential of P. viridis to accumulate heavy metals and the data on its physical properties, this study proffers to determine the relationships between both properties. The similarities of the physical properties are used to mathematical model their relationships, which included the size (length, width, height) and weight (wet and dry) of P. viridis, whilst the heavy metals are focused on concentrations of Pb, Cu, Cr, Cd and Zn. The concentrations of metal elements are detected by using Flame Atomic Adsorption Spectrometry. Results show that the mean concentration of Pb, Cu, Cr, Cd, Zn, length, width, height, wet weight and dry weight are: 1.12 +/- 1.00, 2.36 +/- 1.65, 2.12 +/- 2.74, 0.44 +/- 0.41 and 16.52 +/- 10.64 mg kg(-1) (dry weight), 105.08 +/- 14.35, 41.64 +/- 4.64, 28.75 +/- 3.92 mm, 14.56 +/- 3.30 and 2.37 +/- 0.86 g, respectively. It is also found out that the relationships between the Heavy Metals Concentrations (HMA) and the physical properties can be represented using Multiple Linear Regressions (MLR) models, relating that the HMA of Zinc has affected significantly the physical growth properties of P. viridis.
    Matched MeSH terms: Perna/drug effects*; Perna/metabolism*
  15. Low KL, Khoo HW, Koh LL
    Environ Monit Assess, 1991 Oct;19(1-3):319-33.
    PMID: 24233949 DOI: 10.1007/BF00401321
    Marine biofouling causes problems to marine structure and obstructs condenser tubes in cooling systems which use sea water as the coolant. The main purpose of this study is to investigate the seasonal ecology of biofouling organisms such as the green mussel, Perna viridis, the dominant fouling species in the Eastern Johore Straits at the Senoko Power Station. The spawning time and its relationship with environmental conditions were studied. The physical, chemical and biological conditions of the sea at Senoko were monitored for a year. Settling slides were used to study the fouling succession in different monsoon seasons. The study showed that there were two main spawning peaks for the green mussel and that these peaks occurred during the intermonsoon months of November and April. These peaks were also correlated with the bimodal patterns for salinity, dissolved oxyen, bivalve veliger larval density and total plankton biomass of the Eastern Johore Strait water. Succession patterns were similar during the two monsoon seasons, however, the rate of fouling was probably greater during the southwest monsoon months. It is therefore advisable that the control or reduction of biofouling in Eastern Johore Strait should take into account the seasonal fluctuations and spawning of the fouling organisms.
    Matched MeSH terms: Perna
  16. Yap CK, Cheng WH, Karami A, Ismail A
    Sci Total Environ, 2016 May 15;553:285-96.
    PMID: 26925739 DOI: 10.1016/j.scitotenv.2016.02.092
    A total of 40 marine mussel Perna viridis populations collected (2002-2009) from 20 geographical sites located in two busy shipping lanes namely the Straits of Malacca (10 sites; 16 populations) and the Straits of Johore (8 sites; 21 populations) and three populations (2 sites) on the east coast of Peninsular Malaysia, was determined for Cd, Cu, Fe, Ni, Pb and Zn concentrations. In comparison with the maximum permissible limits (MPLs) set by existing food safety guidelines, all metal concentrations found in all the mussel populations were lower than the prescribed MPLs. In terms of the provisional tolerable weekly intake prescribed by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) and oral reference doses (ORDs) by the USEPA, all the studied metals (except for Pb) were unlikely to become the limiting factors or unlikely to pose a risk for the consumption of the mussel populations. The estimated daily intake (EDI) for average level mussel (ALM) and high level mussel (HLM) consumers of mussels was found to be lower than the ORD guidelines for Cd, Cu, Fe, Ni and Zn. Furthermore, the target hazard quotient (THQ) was found to be less than 1 for ALM consumers but higher than 1 for HLM consumers in some sites. Therefore, there were no potential human health risks to the ALM consumers of the mussels. However, for Pb THQ values, the Pb levels in some mussel populations could create a health risk problem. Present results indicate that the consumption amounts of mussels should be limited for minimizing potential health risks of heavy metals to the HLM consumers.
    Matched MeSH terms: Perna
  17. Asmat Armad, Nur Diana Mehat, Usup G, Rahimi Hamid
    Sains Malaysiana, 2014;43:543-550.
    This study was carried out to know the bacteria population density in the blood cockle (Anadara granosa) and green lipped mussel (Perna viridis), to analyse the bacteria resistance towards antibiotics and antimicrobial activity of isolates against selected pathogen. Samples of blood cockle and green lipped mussel were obtained from five areas in Kedah and Negeri Sembilan. Bacterial population densities in mussels and cockles were 3 x 102 - 8 x 108 cFulmL and 5 x 102 - 5 x 108 cFulmL, respectively. A total of 162 isolates were obtained, of which 131 isolates were from mussels and 31 isolates were from cockles. Vibrio sp. was the most dominant genus in both types of samples. Antibiotic testing of all isolates showed most were resistant to Penicillin (10 U) and most were sensitive to Ciprofloxacin (5 Jig). Most isolates (160/162) showed resistance to at least two antibiotics and 10 isolates were resistant to more than five antibiotics. Multiple antibiotic resistance indices (MAR) were calculated based on the antibiotic resistance results. Most isolates had a MAR index value of 02 which indicated the isolates were not contaminated with antibiotic residues. The highest index value was 0 .7 . Fifteen out of 39 isolates which produced beta-lactamase enzyme were tested for antimicrobial activity against selected pathogen. Results indicated that antimicrobial activity were varies among the isolates. Isolate smii-Ip produced antimicrobial activity against six out of the nine tested pathogen and none of the isolates active against Pseudomonas mirabilis.
    Matched MeSH terms: Perna
  18. Normah, I., Nurdalila Diyana, M.R.
    MyJurnal
    This study was conducted to evaluate umami taste in protein hydrolysate produced from green mussel (Perna viridis) by hydrolysing with flavorzyme at pH 8, enzyme substrate ratio (E/S) 3% with or without the presence of 0.4% sodium tripolyphosphate (STPP) and 1.5% NaCI. Degree of hydrolysis (DH), yield, amino acid compositions, molecular weight distribution and sensory evaluation were determined. The highest DH (23.18%), darkest color and highest yield (8.34%) were recorded for hydrolysate produced in the presence of both STPP and NaCI. Electrophoresis analysis showed the presence of protein bands between 10 to 70 kDa where hydrolysate with addition of STPP and NaCI had bands with lower intensities. Amino acids which contribute to the umami taste such as glutamic acid, glycine and aspartic acid were higher in hydrolysate produced with STPP and NaCI addition. The hydrolysate has lesser fishy odor and flavor than those produced with only in the presence of flavorzyme and was also rated with highest score for all the five basic tastes including bitterness. However, the score for bitterness was still lower than the reference solutions. Therefore, green mussel hydrolysate produced in this study has a good potential as a food flavorant.
    Matched MeSH terms: Perna
  19. Yap CK, Shahbazi A, Zakaria MP
    Bull Environ Contam Toxicol, 2012 Dec;89(6):1205-10.
    PMID: 23052577 DOI: 10.1007/s00128-012-0838-x
    In this study, the ranges of pollutants found in the soft tissues of Perna viridis collected from Kg. Masai and Kg. Sg. Melayu, both located in the Straits of Johore, were 0.85-1.58 μg/g dry weight (dw) for Cd, 5.52-12.2 μg/g dw for Cu, 5.66-8.93 μg/g dw for Ni and 63.4-72.3 μg/g dw for Zn, and 36.4-244 ng/g dry weight for ∑PAHs. Significantly (p < 0.05) higher concentrations of Cd, Cu, Ni, Zn and ∑PAHs in the mussels were found in the water of a seaport site at Kg. Masai than a non-seaport site at Kg. Sg. Melayu population. The ratios of low molecular weight/high molecular weight hydrocarbons (2.94-3.42) and fluoranthene/pyrene (0.43-0.45) in mussels from both sites indicated the origin of the PAHs to be mainly petrogenic. This study has demonstrated the utility of using the soft tissues of P. viridis as a biomonitor of PAH contamination and bioavailability in the coastal waters of Peninsular Malaysia.
    Matched MeSH terms: Perna/metabolism*
  20. Mahat NA, Muktar NK, Ismail R, Abdul Razak FI, Abdul Wahab R, Abdul Keyon AS
    Environ Sci Pollut Res Int, 2018 Oct;25(30):30224-30235.
    PMID: 30155632 DOI: 10.1007/s11356-018-3033-8
    Contamination of toxic metals in P. viridis mussels has been prevalently reported; hence, health risk assessment for consuming this aquaculture product as well as the surrounding surface seawater at its harvesting sites appears relevant. Since Kampung Pasir Puteh, Pasir Gudang is the major harvesting site in Malaysia, and because the last heavy metal assessment was done in 2009, its current status remains unclear. Herein, flame atomic absorption spectrometry and flow injection mercury/hydride system were used to determine the concentrations of Pb, Cd, Cu and total Hg in P. viridis mussels and surface seawater (January-March 2015), respectively. Significantly higher concentrations of these metals were found in P. viridis mussels (p 
    Matched MeSH terms: Perna/metabolism*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links