Displaying all 8 publications

Abstract:
Sort:
  1. Saw KY, Anz AW, Ng RC, Jee CS, Low SF, Dorvault C, et al.
    Arthroscopy, 2021 08;37(8):2502-2517.
    PMID: 34265388 DOI: 10.1016/j.arthro.2021.01.067
    PURPOSE: The purpose of this study was to evaluate the safety and efficacy of intra-articular injections of autologous peripheral blood stem cells (PBSCs) plus hyaluronic acid (HA) after arthroscopic subchondral drilling into massive chondral defects of the knee joint and to determine whether PBSC therapy can improve functional outcome and reduce pain of the knee joint better than HA plus physiotherapy.

    METHODS: This is a dual-center randomized controlled trial (RCT). Sixty-nine patients aged 18 to 55 years with International Cartilage Repair Society grade 3 and 4 chondral lesions (size ≥3 cm2) of the knee joint were randomized equally into (1) a control group receiving intra-articular injections of HA plus physiotherapy and (2) an intervention group receiving arthroscopic subchondral drilling into chondral defects and postoperative intra-articular injections of PBSCs plus HA. The coprimary efficacy endpoints were subjective International Knee Documentation Committee (IKDC) and Knee Injury and Osteoarthritis Outcome Score (KOOS)-pain subdomain measured at month 24. The secondary efficacy endpoints included all other KOOS subdomains, Numeric Rating Scale (NRS), and Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) scores.

    RESULTS: At 24 months, the mean IKDC scores for the control and intervention groups were 48.1 and 65.6, respectively (P < .0001). The mean for KOOS-pain subdomain scores were 59.0 (control) and 86.0 (intervention) with P < .0001. All other KOOS subdomain, NRS, and MOCART scores were statistically significant (P < .0001) at month 24. Moreover, for the intervention group, 70.8% of patients had IKDC and KOOS-pain subdomain scores exceeding the minimal clinically important difference values, indicating clinical significance. There were no notable adverse events that were unexpected and related to the study drug or procedures.

    CONCLUSIONS: Arthroscopic marrow stimulation with subchondral drilling into massive chondral defects of the knee joint followed by postoperative intra-articular injections of autologous PBSCs plus HA is safe and showed a significant improvement of clinical and radiologic scores compared with HA plus physiotherapy.

    LEVEL OF EVIDENCE: Level I, RCT.

    Matched MeSH terms: Peripheral Blood Stem Cells*
  2. Anz AW, Torres J, Plummer HA, Siew-Yoke Jee C, Dekker TJ, Johnson KB, et al.
    Arthroscopy, 2021 11;37(11):3347-3356.
    PMID: 33940122 DOI: 10.1016/j.arthro.2021.04.036
    PURPOSE: The primary objective of this study was to reproduce and validate the harvest, processing and storage of peripheral blood stem cells for a subsequent cartilage repair trial, evaluating safety, reliability, and potential to produce viable, sterile stem cells.

    METHODS: Ten healthy subjects (aged 19-44 years) received 3 consecutive daily doses of filgrastim followed by an apheresis harvest of mononuclear cells on a fourth day. In a clean room, the apheresis product was prepared for cryopreservation and processed into 4 mL aliquots. Sterility and qualification testing were performed pre-processing and post-processing at multiple time points out to 2 years. Eight samples were shipped internationally to validate cell transport potential. One sample from all participants was cultured to test proliferative potential with colony forming unit (CFU) assay. Five samples, from 5 participants were tested for differentiation potential, including chondrogenic, adipogenic, osteogenic, endoderm, and ectoderm assays.

    RESULTS: Fresh aliquots contained an average of 532.9 ± 166. × 106 total viable cells/4 mL vial and 2.1 ± 1.0 × 106 CD34+ cells/4 mL vial. After processing for cryopreservation, the average cell count decreased to 331.3 ± 79. × 106 total viable cells /4 mL vial and 1.5 ± 0.7 × 106 CD34+ cells/4 mL vial CD34+ cells. Preprocessing viability averaged 99% and postprocessing 88%. Viability remained constant after cryopreservation at all subsequent time points. All sterility testing was negative. All samples showed proliferative potential, with average CFU count 301.4 ± 63.9. All samples were pluripotent.

    CONCLUSIONS: Peripheral blood stem cells are pluripotent and can be safely harvested/stored with filgrastim, apheresis, clean-room processing, and cryopreservation. These cells can be stored for 2 years and shipped without loss of viability.

    CLINICAL RELEVANCE: This method represents an accessible stem cell therapy in development to augment cartilage repair.

    Matched MeSH terms: Peripheral Blood Stem Cells*
  3. Saw KY, Anz AW, Jee CS, Low SF, Dawam A, Ramlan A
    Orthop Surg, 2024 Feb;16(2):506-513.
    PMID: 38087402 DOI: 10.1111/os.13949
    BACKGROUND: Treatment of osteochondral defects (OCDs) of the knee joint remains challenging. The purpose of this study was to evaluate the clinical and radiological results of osteochondral regeneration following intra-articular injections of autologous peripheral blood stem cells (PBSC) plus hyaluronic acid (HA) after arthroscopic subchondral drilling into OCDs of the knee joint.

    CASE PRESENTATION: Five patients with OCDs of the knee joint are presented. The etiology includes osteochondritis dissecans, traumatic knee injuries, previously failed cartilage repair procedures involving microfractures and OATS (osteochondral allograft transfer systems). PBSC were harvested 1 week after surgery. Patients received intra-articular injections at week 1, 2, 3, 4, and 5 after surgery. Then at 6 months after surgery, intra-articular injections were administered at a weekly interval for 3 consecutive weeks. These 3 weekly injections were repeated at 12, 18 and 24 months after surgery. Each patient received a total of 17 injections. Subjective International Knee Documentation Committee (IKDC) scores and MRI scans were obtained preoperatively and postoperatively at serial visits. At follow-ups of >5 years, the mean preoperative and postoperative IKDC scores were 47.2 and 80.7 respectively (p = 0.005). IKDC scores for all patients exceeded the minimal clinically important difference values of 8.3, indicating clinical significance. Serial MRI scans charted the repair and regeneration of the OCDs with evidence of bone growth filling-in the base of the defects, followed by reformation of the subchondral bone plate and regeneration of the overlying articular cartilage.

    CONCLUSION: These case studies showed that this treatment is able to repair and regenerate both the osseous and articular cartilage components of knee OCDs.

    Matched MeSH terms: Peripheral Blood Stem Cells*
  4. Kuan JW, Su AT, Wong SP, Sim XY, Toh SG, Ong TC, et al.
    Transfus Apher Sci, 2015 Oct;53(2):196-204.
    PMID: 25910537 DOI: 10.1016/j.transci.2015.03.017
    There are few randomized trials comparing filgrastim and pegfilgrastim in peripheral blood stem cell mobilization (PBSCM). None of the trials studied the effects of the timing of pegfilgrastim administration on the outcomes of mobilization. We conducted a randomized triple blind control trial comparing the outcomes of filgrastim 5 µg/kg daily from day 3 onwards, 'early' pegfilgrastim 6 mg on day 3 and 'delayed' pegfilgrastim 6 mg on day 7 in cyclophosphamide PBSCM in patients with no previous history of mobilization. Peripheral blood (PB) CD34+ cell count was checked on day 8 and day 11 onward. Apheresis was started when PB CD34+ ≥ 10/µl from day 11 onward. The primary outcome was the successful mobilization rate, defined as cumulative collection of ≥2 × 10(6)/kg CD34+ cells in three or less apheresis. The secondary outcomes were the day of neutrophil and platelet engraftment post transplantation. There were 156 patients randomized and 134 patients' data analyzed. Pegfilgrastim 6 mg day 7 produced highest percentage of successful mobilization, 34 out of 48 (70.8%) analyzed patients, followed by daily filgrastim, 28 out of 44 (63.6%) and day 3 pegfilgrastim, 20 out of 42 (47.6%) (p = 0.075). Pegfilgrastim day 7 and daily filgrastim reported 1.48 (p = 0.014) and 1.49 (p = 0.013) times higher successful mobilization rate respectively as compared to pegfilgrastim day 3 after adjusting for disease, gender and exposure to myelotoxic agent. Multiple myeloma patients were three times more likely to achieve successful mobilization as compared to acute leukemia or lymphoma patients. Pegfilgrastim avoided the overshoot of white cells compared to filgrastim. There was no difference in the duration of both white cells and platelet recovery post transplantation between the three interventional arms.
    Matched MeSH terms: Peripheral Blood Stem Cells
  5. Saw KY, Gill R, Low TC
    Malays Orthop J, 2020 Nov;14(3):166-169.
    PMID: 33403079 DOI: 10.5704/MOJ.2011.026
    This is a case report of a Gustilo-Anderson Type IIIB comminuted open right tibial fracture with massive bone loss, complicated by methicillin-resistant Staphylococus aureus (MRSA) infection. Non-viable and contaminated bony fragments were removed and infected bone resected. Soft tissue coverage and antibiotics were effective against the MRSA infection. A unifocal bone transport with the Ilizarov method regenerated 13cm of the missing tibia. Autologous peripheral blood stem cells (PBSC) injections into the osteogenesis site boosted bone regeneration and consolidation with a shortened Bone Healing index (BHI) of 23 days/cm.
    Matched MeSH terms: Peripheral Blood Stem Cells
  6. Kuan JW, Su AT, Leong CF
    J Clin Apher, 2017 Dec;32(6):517-542.
    PMID: 28485020 DOI: 10.1002/jca.21550
    Granulocyte-colony stimulating factor (G-CSF) mobilizes and increases the amount of hematopoietic stem cells in peripheral blood, enabling its harvest by few apheresis procedures. The pegylated G-CSF has longer half-life and is given once only, which is more comfortable for patients, whereas the non-pegylated requires multiple daily injection because of its short half-life. We summarized results of randomized trials comparing the efficacy and safety of pegylated and non-pegylated G-CSF for peripheral blood stem cell mobilization. We searched the Cochrane CENTRAL, MEDLINE, EMBASE, and two conference proceedings. Two authors made the selection, extracted data and evaluated methodological quality using GRADE independently. We used random-effects model for meta-analysis. We found 3956 records and retrieved 47 full texts. We included eight randomized trials with a total number of 554 randomized and 532 analyzed subjects. The meta-analysis included five trials because not all trials reported the same outcomes. Pooling data from two studies shows no evidence for a difference in the successful mobilization rate (CD34+ cell ≥ 2 × 106 /kg collected) between pegfilgrastim 6 mg (early administration) and filgrastim 5 µg/kg/day (147 participants; risk ratio (RR) 0.87, 95% confidence interval (95%CI) 0.67-1.11; P = .26). Pooling data from three studies shows no difference in the incidence of adverse events between pegylated and non-pegylated G-CSF (170 participants; RR 0.86, 95%CI 0.34-2.17; P = .75). No difference found on the quantity of CD34+ cells collected, number of apheresis procedure in successful mobilization, level of peak PB CD34+ cells achieved, and day of neutrophil and platelet engraftment.
    Matched MeSH terms: Peripheral Blood Stem Cells/cytology
  7. Abdul Wahid SF, Ismail NA, Wan Jamaludin WF, Muhamad NA, Abdul Hamid MKA, Harunarashid H, et al.
    Cochrane Database Syst Rev, 2018 Aug 29;8(8):CD010747.
    PMID: 30155883 DOI: 10.1002/14651858.CD010747.pub2
    BACKGROUND: Revascularisation is the gold standard therapy for patients with critical limb ischaemia (CLI). In over 30% of patients who are not suitable for or have failed previous revascularisation therapy (the 'no-option' CLI patients), limb amputation is eventually unavoidable. Preliminary studies have reported encouraging outcomes with autologous cell-based therapy for the treatment of CLI in these 'no-option' patients. However, studies comparing the angiogenic potency and clinical effects of autologous cells derived from different sources have yielded limited data. Data regarding cell doses and routes of administration are also limited.

    OBJECTIVES: To compare the efficacy and safety of autologous cells derived from different sources, prepared using different protocols, administered at different doses, and delivered via different routes for the treatment of 'no-option' CLI patients.

    SEARCH METHODS: The Cochrane Vascular Information Specialist (CIS) searched the Cochrane Vascular Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE Ovid, Embase Ovid, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), the Allied and Complementary Medicine Database (AMED), and trials registries (16 May 2018). Review authors searched PubMed until February 2017.

    SELECTION CRITERIA: We included randomised controlled trials (RCTs) involving 'no-option' CLI patients comparing a particular source or regimen of autologous cell-based therapy against another source or regimen of autologous cell-based therapy.

    DATA COLLECTION AND ANALYSIS: Three review authors independently assessed the eligibility and methodological quality of the trials. We extracted outcome data from each trial and pooled them for meta-analysis. We calculated effect estimates using a risk ratio (RR) with 95% confidence interval (CI), or a mean difference (MD) with 95% CI.

    MAIN RESULTS: We included seven RCTs with a total of 359 participants. These studies compared bone marrow-mononuclear cells (BM-MNCs) versus mobilised peripheral blood stem cells (mPBSCs), BM-MNCs versus bone marrow-mesenchymal stem cells (BM-MSCs), high cell dose versus low cell dose, and intramuscular (IM) versus intra-arterial (IA) routes of cell implantation. We identified no other comparisons in these studies. We considered most studies to be at low risk of bias in random sequence generation, incomplete outcome data, and selective outcome reporting; at high risk of bias in blinding of patients and personnel; and at unclear risk of bias in allocation concealment and blinding of outcome assessors. The quality of evidence was most often low to very low, with risk of bias, imprecision, and indirectness of outcomes the major downgrading factors.Three RCTs (100 participants) reported a total of nine deaths during the study follow-up period. These studies did not report deaths according to treatment group.Results show no clear difference in amputation rates between IM and IA routes (RR 0.80, 95% CI 0.54 to 1.18; three RCTs, 95 participants; low-quality evidence). Single-study data show no clear difference in amputation rates between BM-MNC- and mPBSC-treated groups (RR 1.54, 95% CI 0.45 to 5.24; 150 participants; low-quality evidence) and between high and low cell dose (RR 3.21, 95% CI 0.87 to 11.90; 16 participants; very low-quality evidence). The study comparing BM-MNCs versus BM-MSCs reported no amputations.Single-study data with low-quality evidence show similar numbers of participants with healing ulcers between BM-MNCs and mPBSCs (RR 0.89, 95% CI 0.44 to 1.83; 49 participants) and between IM and IA routes (RR 1.13, 95% CI 0.73 to 1.76; 41 participants). In contrast, more participants appeared to have healing ulcers in the BM-MSC group than in the BM-MNC group (RR 2.00, 95% CI 1.02 to 3.92; one RCT, 22 participants; moderate-quality evidence). Researchers comparing high versus low cell doses did not report ulcer healing.Single-study data show similar numbers of participants with reduction in rest pain between BM-MNCs and mPBSCs (RR 0.99, 95% CI 0.93 to 1.06; 104 participants; moderate-quality evidence) and between IM and IA routes (RR 1.22, 95% CI 0.91 to 1.64; 32 participants; low-quality evidence). One study reported no clear difference in rest pain scores between BM-MNC and BM-MSC (MD 0.00, 95% CI -0.61 to 0.61; 37 participants; moderate-quality evidence). Trials comparing high versus low cell doses did not report rest pain.Single-study data show no clear difference in the number of participants with increased ankle-brachial index (ABI; increase of > 0.1 from pretreatment), between BM-MNCs and mPBSCs (RR 1.00, 95% CI 0.71 to 1.40; 104 participants; moderate-quality evidence), and between IM and IA routes (RR 0.93, 95% CI 0.43 to 2.00; 35 participants; very low-quality evidence). In contrast, ABI scores appeared higher in BM-MSC versus BM-MNC groups (MD 0.05, 95% CI 0.01 to 0.09; one RCT, 37 participants; low-quality evidence). ABI was not reported in the high versus low cell dose comparison.Similar numbers of participants had improved transcutaneous oxygen tension (TcO₂) with IM versus IA routes (RR 1.22, 95% CI 0.86 to 1.72; two RCTs, 62 participants; very low-quality evidence). Single-study data with low-quality evidence show a higher TcO₂ reading in BM-MSC versus BM-MNC groups (MD 8.00, 95% CI 3.46 to 12.54; 37 participants) and in mPBSC- versus BM-MNC-treated groups (MD 1.70, 95% CI 0.41 to 2.99; 150 participants). TcO₂ was not reported in the high versus low cell dose comparison.Study authors reported no significant short-term adverse effects attributed to autologous cell implantation.

    AUTHORS' CONCLUSIONS: Mostly low- and very low-quality evidence suggests no clear differences between different stem cell sources and different treatment regimens of autologous cell implantation for outcomes such as all-cause mortality, amputation rate, ulcer healing, and rest pain for 'no-option' CLI patients. Pooled analyses did not show a clear difference in clinical outcomes whether cells were administered via IM or IA routes. High-quality evidence is lacking; therefore the efficacy and long-term safety of autologous cells derived from different sources, prepared using different protocols, administered at different doses, and delivered via different routes for the treatment of 'no-option' CLI patients, remain to be confirmed.Future RCTs with larger numbers of participants are needed to determine the efficacy of cell-based therapy for CLI patients, along with the optimal cell source, phenotype, dose, and route of implantation. Longer follow-up is needed to confirm the durability of angiogenic potential and the long-term safety of cell-based therapy.

    Matched MeSH terms: Peripheral Blood Stem Cells/cytology
  8. Hassan MN, Fauzi HM, Husin A, Mustaffa R, Hassan R, Ibrahim MI, et al.
    Oman Med J, 2019 Jan;34(1):34-43.
    PMID: 30671182 DOI: 10.5001/omj.2019.06
    Objectives: Autologous peripheral blood stem cells transplantation (APBSCT) is a therapeutic option which can be used in various hematological, neoplastic disorders including lymphoproliferative disease (LPD). Differences in patient populations and treatment modalities in different transplant centers mean it is important to improve the knowledge of the different factors affecting engraftment after APBSCT for the success of this procedure. We sought to determine the factors influencing neutrophil and platelet engraftment after APBSCT in patients with LPD.

    Methods: We conducted a retrospective review of 70 patients with LPD (35 with lymphoma and 35 with multiple myeloma) who had undergone APBSCT between January 2008 and December 2016. Data obtained included disease type, treatment, and stem cell characteristics. Kaplan-Meier analysis was performed for probabilities of neutrophil and platelet engraftment occurred and was compared by the log-rank test. The multivariate Cox proportional hazards regression model was used for the analysis of potential independent factors influencing engraftment. A p-value < 0.050 was considered statistically significant.

    Results: Most patients were ethnic Malay, the median age at transplantation was 49.5 years. Neutrophil and platelet engraftment occurred in a median time of 18 (range 4-65) and 17 (range 6-66) days, respectively. The majority of patients showed engraftment with 65 (92.9%) and 63 (90.0%) showing neutrophil and platelet engraftment, respectively. We observed significant differences between neutrophil engraftment and patient's weight (< 60/≥ 60 kg), stage of disease at diagnosis, number of previous chemotherapy cycles (< 8/≥ 8), and pre-transplant radiotherapy. While for platelet engraftment, we found significant differences with gender, patient's weight (< 60/≥ 60 kg), pre-transplant radiotherapy, and CD34+ dosage (< 5.0/≥ 5.0 × 106/kg and < 7.0/≥ 7.0 × 106/kg). The stage of disease at diagnosis (p = 0.012) and pre-transplant radiotherapy (p = 0.025) were found to be independent factors for neutrophil engraftment whereas patient's weight (< 60/≥ 60 kg, p = 0.017), age at transplantation (< 50/≥ 50 years, p = 0.038), and CD34+ dosage (< 7.0/≥ 7.0 × 106/kg, p = 0.002) were found to be independent factors for platelet engraftment.

    Conclusions: Patients with LPD who presented at an early stage and with no history of radiotherapy had faster neutrophil engraftment after APBSCT, while a younger age at transplantation with a higher dose of CD34+ cells may predict faster platelet engraftment. However, additional studies are necessary for better understanding of engraftment kinetics to improve the success of APBSCT.

    Matched MeSH terms: Peripheral Blood Stem Cells
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links