A novel actinobacterial strain, designated MUSC 201T, was isolated from a mangrove soil collected from Kuantan, the capital city of Pahang State in Malaysia. The taxonomic status of this strain was determined using a polyphasic approach. Comparative 16S rRNA gene sequence analysis revealed that strain MUSC 201T represented a novel lineage within the class Actinobacteria. Strain MUSC 201T formed a distinct clade in the family Nocardioidaceae and was most closely related to the members of the genera Nocardioides (16S rRNA gene sequence similarity, 91.9-95.1%), Aeromicrobium (92.7-94.6%), Marmoricola (92.5-93.1%) and Kribbella (91.5-92.4%). The cells of this strain were irregular coccoid to short rod shaped. The peptidoglycan contained ll-diaminopimelic acid as diagnostic diamino acid and the peptidoglycan type was A3γ. The peptidoglycan cell wall contained ll-diaminopimelic acid, glycine, glutamic acid and alanine in a molar ratio of 1.5:0.9:1.0:1.5. The cell-wall sugars were galactose and rhamnose. The predominant menaquinone was MK-9(H4). The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphoglycolipid, glycolipid and four unknown phospholipids. The major cellular fatty acids were C18:1ω9c (30.8%), C16:0 (24.1%), and 10-methyl C18:0 (13.9%). The DNA G+C content was 72.0±0.1 mol%. On the basis of phylogenetic and phenotypic differences from members of the genera of the family Nocardioidaceae, a novel genus and species, Mumia flava gen. nov., sp. nov. are proposed. The type strain of Mumia flava is MUSC 201T (=DSM 27763T=MCCC 1A00646T=NBRC 109973T).
Strain MUSC 117(T) was isolated from mangrove soil of the Tanjung Lumpur forest in Pahang, Malaysia. This bacterium was yellowish-white pigmented, Gram-staining-positive, rod-coccus shaped and non-motile. On the basis of 16S rRNA gene sequence, strain MUSC 117(T) exhibited highest sequence similarity to Sinomonas atrocyanea DSM 20127(T) (98.0 %), Sinomonas albida LC13(T) (97.9 %) and Sinomonas soli CW 59(T) (97.8 %), and lower (<97.6 %) sequence similarity to other species of the genus Sinomonas. DNA-DNA hybridization experiments revealed a low level of DNA-DNA relatedness (less than 27 %) between strain MUSC 117(T) and closely related species. Chemotaxonomically, the peptidoglycan type was A3α, containing the amino acids lysine, serine, glycine, alanine, glutamic acid and muramic acid. The whole-cell sugars detected were rhamnose, ribose, glucose, galactose and a smaller amount of mannose. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and five unidentified glycolipids. The major fatty acids (>10.0 %) of the cell membrane were anteiso-C15 : 0 (39.4 %), C18 : 1ω7c (17.7 %), anteiso-C17 : 0 (17.2 %) and iso-C16 : 0 (11.4 %). The predominant respiratory quinones detected were MK-9(H2) and MK-9. The DNA G+C content was 67.3 mol%. A comparison of BOX-PCR fingerprints indicated that strain MUSC 117(T) represented a unique DNA profile. Results based on a polyphasic approach showed that strain MUSC 117(T) represents a novel species of the genus Sinomonas, for which the name Sinomonas humi sp. nov. is proposed. The type strain of Sinomonas humi sp. nov. is MUSC 117(T) ( = DSM 29362(T) = MCCC 1K00410(T) = NBRC 110653(T)).
Strain MUSC 115(T) was isolated from mangrove soil of the Tanjung Lumpur river in the state of Pahang, Peninsular Malaysia. Cells of this strain stained Gram-positive and were non-spore-forming, short rods that formed yellowish-white colonies on different agar media. The taxonomy of strain MUSC 115(T) was studied by a polyphasic approach, and the organism showed a range of phylogenetic and chemotaxonomic properties consistent with those of the genus Microbacterium. The cell-wall peptidoglycan was of type B2β, containing the amino acids ornithine, alanine, glycine, glutamic acid and homoserine. The muramic acid was of the N-glycolyl form. The predominant menaquinones detected were MK-12, MK-13 and MK-11. The polar lipids consisted of phosphatidylglycerol, phosphoglycolipid, diphosphatidylglycerol, two unidentified lipids, three unidentified phospholipids and four unidentified glycolipids. The major fatty acids of the cell membrane were anteiso-C15:0 and anteiso-C17:0. The whole-cell sugars detected were ribose, glucose, mannose and galactose. Based on the 16S rRNA gene sequence, strain MUSC 115(T) showed the highest sequence similarity to Microbacterium immunditiarum SK 18(T) (98.1%), M. ulmi XIL02(T) (97.8%) and M. arborescens DSM 20754(T) (97.5%) and lower sequence similarity to strains of other species of the genus Microbacterium. DNA-DNA hybridization experiments revealed a low level of DNA-DNA relatedness (less than 24%) between strain MUSC 115(T) and the type strains of closely related species. Furthermore, BOX-PCR fingerprint comparison also indicated that strain MUSC 115(T) represented a unique DNA profile. The DNA G+C content determined was 70.9 ± 0.7 mol%, which is lower than that of M. immunditiarum SK 18(T). Based on the combination of genotypic and phenotypic data, it is proposed that strain MUSC 115(T) represents a novel species of the genus Microbacterium, for which the name Microbacterium mangrovi sp. nov. is proposed. The type strain is MUSC 115(T) ( = MCCC 1K00251(T) = DSM 28240(T) = NBRC 110089(T)).
The taxonomic position of an actinobacterium strain, C296001T, isolated from a soil sample collected in Sarawak, Malaysia, was established using a polyphasic approach. Phylogenetically, strain C296001T was closely associated with the genus Luteipulveratus and formed a distinct monophyletic clade with the only described species, Luteipulveratus mongoliensis NBRC 105296T. The 16S rRNA gene sequence similarity between strain C296001T and L. mongoliensis was 98.7 %. DNA-DNA hybridization results showed that the relatedness of strain C296001T to L. mongoliensis was only 21.5 %. The DNA G+C content of strain C296001T was 71.7 mol%. Using a PacBio RS II system, whole genome sequences for strains C296001T and NBRC 105296T were obtained. The genome sizes of 4.5 Mbp and 5.4 Mbp determined were similar to those of other members of the family Dermacoccaceae. The cell-wall peptidoglycan contained lysine, alanine, aspartic acid, glutamic acid and serine, representing the peptidoglycan type A4α l-Lys-l-Ser-d-Asp. The major menaquinones were MK-8(H4), MK-8 and MK-8(H2). Phosphatidylglycerol, phosphatidylinositol, diphosphatidylglycerol and phosphoglycolipid were the polar lipids, while the whole-cell sugars were glucose, fucose and lesser amounts of ribose and galactose. The major fatty acids were iso-C16 : 0, anteiso-C17 : 0, iso-C16 : 1 H, anteiso-C17 : 1ω9c, iso-C18 : 0 and 10-methyl C17 : 0. Chemotaxonomic analyses showed that C296001T had typical characteristics of members of the genus Luteipulveratus, with the main differences occurring in phenotypic characteristics. On the basis of the phenotypic and chemotaxonomic evidence, it is proposed that strain C296001T be classified as a representative of a novel species in the genus Luteipulveratus, for which the name Luteipulveratus halotolerans sp. nov. is recommended. The type strain is C296001T ( = ATCC TSD-4T = JCM 30660T).
A Gram-stain-positive, endospore-forming, rod-shaped bacterial strain, designated D5(T), was isolated from seawater collected from a sandy beach in a southern state of Malaysia and subjected to a polyphasic taxonomic study. Sequence analysis of the 16S rRNA gene demonstrated that this isolate belongs to the genus Jeotgalibacillus, with 99.87% similarity to Jeotgalibacillus alimentarius JCM 10872(T). DNA-DNA hybridization of strain D5(T) with J. alimentarius JCM 10872(T) demonstrated 26.3% relatedness. The peptidoglycan type was A1α linked directly to L-lysine as the diamino acid. The predominant quinones identified in strain D5(T) were menaquinones MK-7 and MK-8.The major fatty acids were iso-C15:0 and anteiso-C15:0. The G+C content of its DNA was 43.0 mol%. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and sulfoquinovosyl diacylglycerol, as well as two unknown phospholipids and three unknown lipids. The phenotypic, chemotaxonomic and genotypic data indicated that strain D5(T) represents a novel species of the genus Jeotgalibacillus, for which the name Jeotgalibacillus malaysiensis sp. nov. is proposed (type strain D5(T) = DSM 28777(T) = KCTC33550(T)). An emended description of the genus Jeotgalibacillus is also provided.
The taxonomic position of a novel Amycolatopsis strain isolated from a high altitude Atacama Desert subsurface soil was established using a polyphasic approach. The strain, isolate H5T, was shown to have chemical properties typical of members of the genus Amycolatopsis such as meso-diaminopimelic acid as the diamino acid in the cell wall peptidoglycan, arabinose and galactose as diagnostic sugars and MK-9(H4) as the predominant isoprenologue. It also has cultural and morphological properties consistent with its classification in the genus, notably the formation of branching substrate hyphae which fragment into rod-like elements. 16S rRNA gene sequence analyses showed that the strain is closely related to the type strain of Amycolatopsis mediterranei but could be distinguished from this and other related Amycolatopsis strains using a broad range of phenotypic properties. It was separated readily from the type strain of Amycolatopsis balhymycina, its near phylogenetic neighbour, based on multi-locus sequence data, by low average nucleotide identity (92.9%) and in silico DNA/DNA relatedness values (51.3%) calculated from draft genome assemblies. Consequently, the strain is considered to represent a novel species of Amycolatopsis for which the name Amycolatopsis vastitatis sp. nov. is proposed. The type strain is H5T (= NCIMB 14970T = NRRL B-65279T).
Two novel actinobacteria, strains MUSC 135(T) and MUSC 137, were isolated from mangrove soil at Tanjung Lumpur, Malaysia. The 16S rRNA gene sequence similarity and DNA-DNA relatedness between strains MUSC 135(T) and MUSC 137 were 100 % and 83±3.2 %, confirming that these two strains should be classified in the same species. Strain MUSC 135(T) exhibited a broad-spectrum bacteriocin against the pathogens meticillin-resistant Staphylococcus aureus (MRSA) strain ATCC BAA-44, Salmonella typhi ATCC 19430(T) and Aeromonas hydrophila ATCC 7966(T). A polyphasic approach was used to study the taxonomy of MUSC 135(T), and it showed a range of phylogenetic and chemotaxonomic properties consistent with those of the genus Streptomyces. The diamino acid of the cell-wall peptidoglycan was ll-diaminopimelic acid. The predominant menaquinones were MK-9(H6), MK-9(H4) and MK-9(H8). Polar lipids detected were a lipid, an aminolipid, a phospholipid, phosphatidylinositol, phosphatidylethanolamine and two glycolipids. The predominant cellular fatty acids (>10.0 %) were anteiso-C15 : 0 (20.8 %), iso-C16 : 0 (18.0 %), iso-C15 : 0 (12.2 %) and anteiso-C17 : 0 (11.6 %). The whole-cell sugars were ribose, glucose and mannose. These results suggested that MUSC 135(T) should be placed within the genus Streptomyces. Phylogenetic analysis based on the 16S rRNA gene sequence exhibited that the most closely related strains were Streptomyces cinereospinus NBRC 15397(T) (99.18 % similarity), Streptomyces mexicanus NBRC 100915(T) (99.17 %) and Streptomyces coeruleofuscus NBRC 12757(T) (98.97 %). DNA-DNA relatedness between MUSC 135(T) and closely related type strains ranged from 26.3±2.1 to 49.6±2.5 %. BOX-PCR fingerprint comparisons showed that MUSC 135(T) exhibited a unique DNA profile. The DNA G+C content determined was 70.7±0.3 mol%. Based on our polyphasic study of MUSC 135(T), the strain merits assignment to a novel species, for which the name Streptomyces pluripotens sp. nov. is proposed. The type strain is MUSC 135(T) ( = MCCC 1K00252(T) = DSM 42140(T)).