Displaying all 13 publications

Abstract:
Sort:
  1. Yoshikawa K, Tao S, Arihara S
    J Nat Prod, 2000 Apr;63(4):540-2.
    PMID: 10785436
    The stem of Stephanotis floribunda afforded a new cyclic pentapeptide stephanotic acid (1), possessing a novel 6-(leucin-3'-yl) tryptophan skeleton. The structure of 1 was assigned on the basis of extensive NMR experiments and a chemical reaction and shown to be closely related to the bicyclic octapeptide moroidin (3), a toxin from Laportea moroides.
    Matched MeSH terms: Peptides, Cyclic/chemistry*
  2. Pettit GR, Tan R, Melody N, Kielty JM, Pettit RK, Herald DL, et al.
    Bioorg Med Chem, 1999 May;7(5):895-9.
    PMID: 10400343
    A Montana soil actinomycete, Streptomyces anulatus, produced (1 x 10(-2)% yield) a new cancer cell growth inhibitory cyclooctadepsipeptide named montanastatin (1) accompanied by the potent anticancer antibiotic valinomycin (2) in very high (5.1%) yields. Valinomycin but not montanastatin inhibited growth of a number of pathogenic bacteria and fungi. Interpretation of high-field (500 MHz) NMR and high-resolution FAB mass spectral data allowed assignment of the structure cyclo-(D-Val-L-Lac-L-Val-D-Hiv) to montanastatin. Valinomycin (2) was also isolated from actinomycetes cultured from a tree branch and animal feces collected in Malaysia. Streptomyces exfoliatus, isolated from the tree branch, was found to contain valinomycin in 1.6% yield, while the fecal isolate, S. anulatus, gave valinomycin in 0.9% yield.
    Matched MeSH terms: Peptides, Cyclic/chemistry*
  3. Muhamad A, Ho KL, Rahman MB, Uhrín D, Tan WS
    Chem Biol Drug Des, 2013 Jun;81(6):784-94.
    PMID: 23405984 DOI: 10.1111/cbdd.12120
    A specific ligand targeting the immunodominant region of hepatitis B virus is desired in neutralizing the infectivity of the virus. In a previous study, a disulfide constrained cyclic peptide cyclo S(1) ,S(9) Cys-Glu-Thr-Gly-Ala-Lys-Pro-His-Cys (S(1) , S(9) -cyclo-CETGAKPHC) was isolated from a phage displayed cyclic peptide library using an affinity selection method against hepatitis B surface antigen. The cyclic peptide binds tightly to hepatitis B surface antigen with a relative dissociation constant (KD (rel) ) of 2.9 nm. The binding site of the peptide was located at the immunodominant region on hepatitis B surface antigen. Consequently, this study was aimed to elucidate the structure of the cyclic peptide and its interaction with hepatitis B surface antigen in silico. The solution structure of this cyclic peptide was solved using (1) H, (13) C, and (15) N NMR spectroscopy and molecular dynamics simulations with NMR-derived distance and torsion angle restraints. The cyclic peptide adopted two distinct conformations due to the isomerization of the Pro residue with one structured region in the ETGA sequence. Docking studies of the peptide ensemble with a model structure of hepatitis B surface antigen revealed that the cyclic peptide can potentially be developed as a therapeutic drug that inhibits the virus-host interactions.
    Matched MeSH terms: Peptides, Cyclic/chemistry
  4. Tan WS, Tan GH, Yusoff K, Seow HF
    J Clin Virol, 2005 Sep;34(1):35-41.
    PMID: 16087122
    The surface antigen (HBsAg) of hepatitis B virus (HBV) is highly conformational and generally evokes protective humoral immune response in human. A disulfide constrained random heptapeptide library displayed on the coat protein III of filamentous bacteriophage M13 was employed to select specific ligands that interact with HBsAg subtype ad. Fusion phages carrying the amino acid sequence ETGAKPH and other related sequences were isolated. The binding site of peptide ETGAKPH was located on the immunodominant region of HBsAg. An equilibrium binding assay in solution showed that the phage binds tightly to HBsAg with a relative dissociation constant (KDrel) of 2.9+/-0.9 nM. The phage bearing this peptide has the potential to be used as a diagnostic reagent and two assays for detecting HBsAg in blood samples are described.
    Matched MeSH terms: Peptides, Cyclic/chemistry
  5. Nakamura I, Yoshimura S, Masaki T, Takase S, Ohsumi K, Hashimoto M, et al.
    J Antibiot (Tokyo), 2017 Jan;70(1):45-51.
    PMID: 27599768 DOI: 10.1038/ja.2016.107
    The novel antifungal agent ASP2397 (Vical's compound ID VL-2397) is produced by the fungal strain MF-347833 that was isolated from Malaysian leaf litter and is identified here as an Acremonium species based on its morphology, physiological properties and 28S ribosomal DNA sequence. Because of its potential importance for producing novel antifungal agents, we determined the taxonomic and biologic properties of MF-347833. We show here that ASP2397 is a cyclic hexapeptide that chelates aluminum ion and is therefore similar to ferrichrome, a hydroxamate siderophore. However, ASP2397 differs structurally from licensed antifungal agents such as amphotericin B, triazoles and echinocandins. To understand the relationship between chemical structure and biological function, we isolated certain ASP2397 derivatives from the culture broth, and we further chemically converted the metal-free form to other derivatives.
    Matched MeSH terms: Peptides, Cyclic/chemistry
  6. Lopez JAV, Petitbois JG, Vairappan CS, Umezawa T, Matsuda F, Okino T
    Org. Lett., 2017 08 18;19(16):4231-4234.
    PMID: 28783344 DOI: 10.1021/acs.orglett.7b01869
    Two new chlorinated fatty acid amides, columbamides D (1) and E (2), along with apratoxins A and C and wewakazole, were isolated from the organic extract of a Moorea bouillonii sample from Sabah, Malaysia. Structure elucidation was accomplished by a combination of MS and NMR analyses. The total synthesis of all four stereoisomers of 1 was completed, and the absolute configuration was determined by chiral-phase HPLC and Marfey's analysis.
    Matched MeSH terms: Peptides, Cyclic/chemistry
  7. Bae N, Li L, Lödl M, Lubec G
    Proc Natl Acad Sci U S A, 2012 Oct 30;109(44):17920-4.
    PMID: 23071323 DOI: 10.1073/pnas.1209632109
    Protein profiling has revealed the presence of glacontryphan-M, a peptide toxin identified only in the sea snail genus Conus, in the wings of Hebomoia glaucippe (HG). The wings and body of HG were homogenized and the proteins were extracted and analyzed by 2D gel electrophoresis with subsequent in-gel digestion. Posttranslational protein modifications were detected and analyzed by nano-LC-MS/MS. An antibody was generated against glacontryphan-M, and protein extracts from the wings of HG samples from Malaysia, Indonesia, and the Philippines were tested by immunoblotting. Glacontryphan-M was unambiguously identified in the wings of HG containing the following posttranslational protein modifications: monoglutamylation at E55, methylation at E53, quinone modification at W61, cyanylation at C56, and amidation of the C terminus at G63. Immunoblotting revealed the presence of the toxin in the wings of HG from all origins, showing a single band for glacontryphan-M in HG samples from Malaysia and Philippines and a double band in HG samples from Indonesia. Intriguingly, sequence analysis indicated that the Conus glacontryphan is identical to that of HG. The toxin may function as a defense against diverse predators, including ants, mantes, spiders, lizards, green frogs, and birds.
    Matched MeSH terms: Peptides, Cyclic/chemistry
  8. Alshaibani M, Zin NM, Jalil J, Sidik N, Ahmad SJ, Kamal N, et al.
    J Microbiol Biotechnol, 2017 07 28;27(7):1249-1256.
    PMID: 28535606 DOI: 10.4014/jmb.1608.08032
    In our search for new sources of bioactive secondary metabolites from Streptomyces sp., the ethyl acetate extracts from endophytic Streptomyces SUK 25 afforded five active diketopiperazine (DKP) compounds. The aim of this study was to characterize the bioactive compounds isolated from endophytic Streptomyces SUK 25 and evaluate their bioactivity against multiple drug resistance (MDR) bacteria such as Enterococcus raffinosus, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter spp., and their cytotoxic activities against the human hepatoma (HepaRG) cell line. The production of secondary metabolites by this strain was optimized through Thornton's medium. Isolation, purification, and identification of the bioactive compounds were carried out using high-performance liquid chromatography, high-resolution mass liquid chromatography-mass spectrometry, Fourier transform infrared spectroscopy, and nuclear magnetic resonance, and cryopreserved HepaRG cells were selected to test the cytotoxicity. The results showed that endophytic Streptomyces SUK 25 produces four active DKP compounds and an acetamide derivative, which were elucidated as cyclo-(L-Val-L-Pro), cyclo-(L-Leu-L-Pro), cyclo-(L-Phe-L-Pro), cyclo-(L-Val-L-Phe), and N-(7-hydroxy-6-methyl-octyl)-acetamide. These active compounds exhibited activity against methicillin-resistant S. aureus ATCC 43300 and Enterococcus raffinosus, with low toxicity against human hepatoma HepaRG cells. Endophytic Streptomyces SUK 25 has the ability to produce DKP derivatives biologically active against some MDR bacteria with relatively low toxicity against HepaRG cells line.
    Matched MeSH terms: Peptides, Cyclic/chemistry
  9. Sadek MM, Barlow N, Leung EWW, Williams-Noonan BJ, Yap BK, Shariff FM, et al.
    ACS Chem. Biol., 2018 10 19;13(10):2930-2938.
    PMID: 30226743 DOI: 10.1021/acschembio.8b00561
    SPRY domain- and SOCS box-containing proteins SPSB1, SPSB2, and SPSB4 interact with inducible nitric oxide synthase (iNOS), causing the iNOS to be polyubiquitinated and targeted for degradation. Inhibition of this interaction increases iNOS levels, and consequently cellular nitric oxide (NO) concentrations, and has been proposed as a potential strategy for killing intracellular pathogens. We previously described two DINNN-containing cyclic peptides (CP1 and CP2) as potent inhibitors of the murine SPSB-iNOS interaction. In this study, we report the crystal structures of human SPSB4 bound to CP1 and CP2 and human SPSB2 bound to CP2. We then used these structures to design a new inhibitor in which an intramolecular hydrogen bond was replaced with a hydrocarbon linkage to form a smaller macrocycle while maintaining the bound geometry of CP2 observed in the crystal structures. This resulting pentapeptide SPSB-iNOS inhibitor (CP3) has a reduced macrocycle ring size, fewer nonbinding residues, and includes additional conformational constraints. CP3 has a greater affinity for SBSB2 ( KD = 7 nM as determined by surface plasmon resonance) and strongly inhibits the SPSB2-iNOS interaction in macrophage cell lysates. We have also determined the crystal structure of CP3 in complex with human SPSB2, which reveals the structural basis for the increased potency of CP3 and validates the original design.
    Matched MeSH terms: Peptides, Cyclic/chemistry*
  10. De Bruyne L, Van Poucke C, Di Mavungu DJ, Zainudin NA, Vanhaecke L, De Vleesschauwer D, et al.
    Mol Plant Pathol, 2016 Aug;17(6):805-17.
    PMID: 26456797 DOI: 10.1111/mpp.12329
    Brown spot disease, caused by Cochliobolus miyabeanus, is currently considered to be one of the most important yield reducers of rice (Oryza sativa L.). Despite its agricultural importance, little is known about the virulence mechanisms deployed by the fungus. Therefore, we set out to identify novel virulence factors with a role in disease development. This article reports, for the first time, the production of tentoxin by C. miyabeanus as a virulence factor during brown spot disease and the identification of the non-ribosomal protein synthetase (NRPS) CmNps3, responsible for tentoxin biosynthesis. We compared the chemical compounds produced by C. miyabeanus strains differing in virulence ability using ultra-high-performance liquid chromatography (UHPLC) coupled to high-resolution Orbitrap mass spectrometry (HRMS). The production of tentoxin by a highly virulent strain was revealed by principal component analysis of the detected ions and confirmed by UHPLC coupled to tandem-quadrupole mass spectrometry (MS/MS). The corresponding NRPS was identified by in silico genome analysis and confirmed by gene deletion. Infection tests with wild-type and Cmnps3 mutants showed that tentoxin acts as a virulence factor and is correlated with chlorosis development during the second phase of infection. Although rice has previously been classified as a tentoxin-insensitive plant species, our data demonstrate that tentoxin production by C. miyabeanus affects symptom development.
    Matched MeSH terms: Peptides, Cyclic/chemistry
  11. Jindal HM, Le CF, Mohd Yusof MY, Velayuthan RD, Lee VS, Zain SM, et al.
    PLoS One, 2015;10(6):e0128532.
    PMID: 26046345 DOI: 10.1371/journal.pone.0128532
    Antimicrobial peptides (AMPs) represent promising alternatives to conventional antibiotics in order to defeat multidrug-resistant bacteria such as Streptococcus pneumoniae. In this study, thirteen antimicrobial peptides were designed based on two natural peptides indolicidin and ranalexin. Our results revealed that four hybrid peptides RN7-IN10, RN7-IN9, RN7-IN8, and RN7-IN6 possess potent antibacterial activity against 30 pneumococcal clinical isolates (MIC 7.81-15.62µg/ml). These four hybrid peptides also showed broad spectrum antibacterial activity (7.81µg/ml) against S. aureus, methicillin resistant S. aureus (MRSA), and E. coli. Furthermore, the time killing assay results showed that the hybrid peptides were able to eliminate S. pneumoniae within less than one hour which is faster than the standard drugs erythromycin and ceftriaxone. The cytotoxic effects of peptides were tested against human erythrocytes, WRL-68 normal liver cell line, and NL-20 normal lung cell line. The results revealed that none of the thirteen peptides have cytotoxic or hemolytic effects at their MIC values. The in silico molecular docking study was carried out to investigate the binding properties of peptides with three pneumococcal virulent targets by Autodock Vina. RN7IN6 showed a strong affinity to target proteins; autolysin, pneumolysin, and pneumococcal surface protein A (PspA) based on rigid docking studies. Our results suggest that the hybrid peptides could be suitable candidates for antibacterial drug development.
    Matched MeSH terms: Peptides, Cyclic/chemistry*
  12. Asif M, Saleem M, Yaseen HS, Yehya AH, Saadullah M, Zubair HM, et al.
    Future Microbiol, 2021 Nov;16(16):1289-1301.
    PMID: 34689597 DOI: 10.2217/fmb-2021-0024
    COVID-19, caused by the SARS-CoV-2 outbreak, has resulted in a massive global health crisis. Bioactive molecules extracted or synthesized using starting material obtained from marine species, including griffithsin, plitidepsin and fingolimod are in clinical trials to evaluate their anti-SARS-CoV-2 and anti-HIV efficacies. The current review highlights the anti-SARS-CoV-2 potential of marine-derived phytochemicals explored using in silico, in vitro and in vivo models. The current literature suggests that these molecules have the potential to bind with various key drug targets of SARS-CoV-2. In addition, many of these agents have anti-inflammatory and immunomodulatory potentials and thus could play a role in the attenuation of COVID-19 complications. Overall, these agents may play a role in the management of COVID-19, but further preclinical and clinical studies are still required to establish their role in the mitigation of the current viral pandemic.
    Matched MeSH terms: Peptides, Cyclic/chemistry
  13. Hoque MA, Islam MS, Islam MN, Kato T, Nishino N, Ito A, et al.
    Amino Acids, 2014 Oct;46(10):2435-44.
    PMID: 25048030 DOI: 10.1007/s00726-014-1800-5
    Inhibitors of histone deacetylases (HDACs) are a promising class of anticancer agents that have an effect on gene regulation. The naturally occurring cyclic depsipeptide FK228 containing disulfide and Largazole possessing thioester functionalities act as pro-drugs and share the same HDAC inhibition mechanism in cell. Inspired from these facts, we have reported bicyclic tetrapeptide disulfide HDAC inhibitors resembling FK228 with potent activity and enhanced selectivity. In the present study, we report the design and synthesis of several mono and bicyclic tetrapeptide thioester HDAC inhibitors that share the inhibition mechanism similar to Largazole. Most of the compounds showed HDAC1 and HDAC4 inhibition and p21 promoting activity in nanomolar ranges. Among these the monocyclic peptides 1, 2 and bicyclic peptide, 4 are notable demanding more advanced research to be promising anticancer drug candidates.
    Matched MeSH terms: Peptides, Cyclic/chemistry
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links