Displaying all 7 publications

Abstract:
Sort:
  1. Chung EL, Abdullah FF, Ibrahim HH, Marza AD, Zamri-Saad M, Haron AW, et al.
    Microb Pathog, 2016 Feb;91:141-54.
    PMID: 26706347 DOI: 10.1016/j.micpath.2015.12.003
    Haemorrhagic septicaemia is a disease caused by Pasteurella multocida serotype B: 2 and E: 2. The organism causes acute, highly fatal septicaemic disease with high morbidity and mortality in cattle and more susceptible in buffaloes. Lipopolysaccharide can be found on the outer cell wall of the organism. Lipopolysaccharide is released during multiplication which leads to inflammatory reaction. It represents the endotoxin of P. multocida type B: 2 and responsible for toxicity in haemorrhagic septicaemia which plays an important role in the pathogenesis of the disease. Therefore, the aim of this study was to investigate the clinical signs, blood parameters, gross post mortem lesions and histopathology changes caused by P. multocida type B:2 immunogen lipopolysaccharide infections initiated through intravenous and oral routes of infection. 9 buffalo heifers were divided equally into 3 treatment groups. Group 1 was inoculated orally with 10 ml of phosphate buffer saline (PBS); Group 2 and 3 were inoculated with 10 ml of lipopolysaccharide broth intravenously and orally respectively. For the clinical signs, there were significant differences (p < 0.05) in temperature between the control, intravenous and oral group. In hematology and biochemistry findings, there were significant differences (p < 0.05) in erythrocytes, haemoglobin, PCV, MCV, lymphocytes, monocytes, eosinophils, GGT and albumin between the control, intravenous and oral group. However, there were no significant differences (p > 0.05) in the MCHC, leukocytes, band neutrophils, basophils, thrombocytes, plasma protein, icterus index, total protein, globulin and A:G ratio between intravenous and oral group. For Group 2 buffaloes, there were gross lesions in the lung, trachea, heart, liver, spleen, and kidney. In contrast, lesions were only observed in the lung, trachea and liver of Group 3 buffaloes. There were significant differences (p < 0.05) in hemorrhage and congestion; necrosis and degeneration; and inflammatory cells infiltration between experimental groups and control group. However, there were no significant differences (p > 0.05) in edema lesion between groups. In conclusion, this study is a proof that oral route infection of P. multocida type B:2 immunogen lipopolysaccharide can be used to stimulate host cell responses where oral vaccine through feed could be developed in the near future.
    Matched MeSH terms: Pasteurella multocida/physiology
  2. Jatuponwiphat T, Chumnanpuen P, Othman S, E-Kobon T, Vongsangnak W
    Microb Pathog, 2019 Feb;127:257-266.
    PMID: 30550841 DOI: 10.1016/j.micpath.2018.12.013
    Pasteurella multocida causes respiratory infectious diseases in a multitude of birds and mammals. A number of virulence-associated genes were reported across different strains of P. multocida, including those involved in the iron transport and metabolism. Comparative iron-associated genes of P. multocida among different animal hosts towards their interaction networks have not been fully revealed. Therefore, this study aimed to identify the iron-associated genes from core- and pan-genomes of fourteen P. multocida strains and to construct iron-associated protein interaction networks using genome-scale network analysis which might be associated with the virulence. Results showed that these fourteen strains had 1587 genes in the core-genome and 3400 genes constituting their pan-genome. Out of these, 2651 genes associated with iron transport and metabolism were selected to construct the protein interaction networks and 361 genes were incorporated into the iron-associated protein interaction network (iPIN) consisting of nine different iron-associated functional modules. After comparing with the virulence factor database (VFDB), 21 virulence-associated proteins were determined and 11 of these belonged to the heme biosynthesis module. From this study, the core heme biosynthesis module and the core outer membrane hemoglobin receptor HgbA were proposed as candidate targets to design novel antibiotics and vaccines for preventing pasteurellosis across the serotypes or animal hosts for enhanced precision agriculture to ensure sustainability in food security.
    Matched MeSH terms: Pasteurella multocida/physiology
  3. Zamri-Saad M, Effendy WM, Maswati MA, Salim N, Sheikh-Omar AR
    Br. Vet. J., 1996 Jul;152(4):453-8.
    PMID: 8791853
    A model of pneumonic pasteurellosis has been established in goats using Pasteurella multocida harvested from pneumonic lungs of goats (types A and D), rabbits (type A) and sheep (type D). The resultant infections were acute, subacute or chronic. The gross and histological lesions of the subacute and chronic infections were typical of pneumonic pasteurellosis. P. multocida type D produced significantly (P < 0.01) more severe lesions when compared with other isolates. There were strong correlations between the clinical signs and the severity of lesions.
    Matched MeSH terms: Pasteurella multocida/physiology*
  4. Arumugam ND, Ajam N, Blackall PJ, Asiah NM, Ramlan M, Maria J, et al.
    Trop Biomed, 2011 Apr;28(1):55-63.
    PMID: 21602769
    One hundred and fourteen strains of Pasteurella multocida were isolated from different domestic animals species (cattle, buffalo, sheep, goat, pig, rabbit, dog, cat), avian species (chicken, duck, turkey) and wild animals (deer, tiger, orang utan, marmoset). The serogroups of P. multocida were determined by both conventional capsular serotyping and a multiplex PCR assay targeting specific capsular genes. Based on the conventional serotyping method, the 114 strains of P. multocida were subtyped into 55 species-specific (untypeable strains) P. multocida, 15 serogroup A, 23 serogroup B and 21 serogroup D. Based on the multiplex PCR assay on the specific capsular genes associated with each serogroup, the 114 strains were further divided to 22 species-specific P. multocida (KMT1 - 460 bp), 53 serogroup A (A - 1,044 bp), 33 serogroup B (B - 760 bp) and 6 serogroup D (D - 657 bp). No serogroup E (511 bp) or F (851 bp) was detected among the Malaysian P. multocida. PCR-based typing was more discriminative and could further subtype the previously untypeable strains. Overall, there was a significant and positive correlation between both methods in serogrouping P. multocida (r = 0.7935; p<0.4893). Various serogroups of P. multocida were present among the livestock with 75% of the strains belonging to serogroups A or B. PCR serotyping was therefore a highly species-specific, sensitive and robust method for detection and differentiation of P. multocida serogroups compared to conventional serotyping. To the best of our knowledge, this is the first report from Malaysia of the application of a PCR to rapidly define the species-specific P. multocida and its serogroups as an important zoonotic pathogen in Malaysia.
    Matched MeSH terms: Pasteurella multocida/physiology
  5. Kamal NM, Zamri-Saad M, Masarudin MJ, Othman S
    BMC Vet Res, 2017 Jun 19;13(1):186.
    PMID: 28629460 DOI: 10.1186/s12917-017-1109-1
    BACKGROUND: Pasteurella multocida B:2 causes bovine haemorrhagic septicaemia (HS), leading to rapid fatalities in cattle and buffaloes. An attenuated derivative of P. multocida B:2 GDH7, was previously constructed through mutation of the gdhA gene and proved to be an effective live attenuated vaccine for HS. Currently, only two potential live attenuated vaccine candidates for HS are being reported; P. multocida B:2 GDH7 and P. multocida B:2 JRMT12. This study primarily aims to investigate the potential of P. multocida B:2 GDH7 strain as a delivery vehicle for DNA vaccine for future multivalent applications.

    RESULTS: An investigation on the adherence, invasion and intracellular survival of bacterial strains within the bovine aortic endothelial cell line (BAEC) were carried out. The potential vaccine strain, P. multocida B:2 GDH7, was significantly better (p ≤ 0.05) at adhering to and invading BAEC compared to its parent strain and to P. multocida B:2 JRMT12 and survived intracellularly 7 h post treatment, with a steady decline over time. A dual reporter plasmid, pSRGM, which enabled tracking of bacterial movement from the extracellular environment into the intracellular compartment of the mammalian cells, was subsequently transformed into P. multocida B:2 GDH7. Intracellular trafficking of the vaccine strain, P. multocida B:2 GDH7 was subsequently visualized by tracking the reporter proteins via confocal laser scanning microscopy (CLSM).

    CONCLUSIONS: The ability of P. multocida B:2 GDH7 to model bactofection represents a possibility for this vaccine strain to be used as a delivery vehicle for DNA vaccine for future multivalent protection in cattle and buffaloes.

    Matched MeSH terms: Pasteurella multocida/physiology*
  6. Al-Haddawi MH, Jasni S, Zamri-Saad M, Mutalib AR, Zulkifli I, Son R, et al.
    Vet J, 2000 May;159(3):274-81.
    PMID: 10775473
    In vitro experiments were undertaken to study the adhesion and colonization to tracheal mucosa, lung and aorta explants from freshly killed rabbits of two different strains of Pasteurella multocida. Serotype A:3 (capsulated, fimbriae +, haemagglutination -, dermonecrotic toxin -) isolated from a rabbit with rhinitis, and serotype D:1 (non-capsulated, fimbriae +, haemagglutination +, dermonecrotic toxin +) isolated from a dead rabbit with septicaemia, were used. When the explants were observed under the scanning electron microscope, the type D strain was highly adherent to trachea and aorta explants compared to the type A strain. Adhesion to lung explants was best achieved by the type A strain after 45 min incubation, but after 2 h incubation no significant difference was observed between the strains. Our data indicate that the presence of fimbriae and the absence of capsule seem to enhance the adherence of P. multocida type D strain to tracheal tissue. The capsular material of P. multocida type A strain and the toxin of the type D strain seem to influence the adherence to lung tissue in rabbit. Adhesion of strain D to aorta may indicate the expression of receptors on the endothelium to that strain and may also explain the ability of certain strains to cause septicaemia.
    Matched MeSH terms: Pasteurella multocida/physiology*
  7. Jamali H, Rezagholipour M, Fallah S, Dadrasnia A, Chelliah S, Velappan RD, et al.
    Vet J, 2014 Nov;202(2):381-3.
    PMID: 25201254 DOI: 10.1016/j.tvjl.2014.07.024
    The objectives of this study were to determine the prevalence, characterization and antibiotic resistance of Pasteurella multocida isolated from calves with respiratory infection in Iran. P. multocida was detected in 141/169 bovine respiratory infection cases on Iranian dairy and beef farms. P. multocida were grouped into serogroups A (126/141), D (12/141), and B (3/141). Of the P.  multocida isolates, all harboured the psl, ompH, oma87, fimA, ptfA, nanB, and nanH genes, 139/141 had hsf-2, and 115/141 pfhA, and tadD. The isolates were most frequently resistant to penicillin G (43/141 resistant isolates; 30.5%) and streptomycin (31/141; 22%).
    Matched MeSH terms: Pasteurella multocida/physiology*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links