Displaying all 4 publications

Abstract:
Sort:
  1. Mamat NA, See HH
    J Chromatogr A, 2015 Aug 7;1406:34-9.
    PMID: 26141273 DOI: 10.1016/j.chroma.2015.06.020
    In this work, a new variation of the electromembrane extraction (EME) approach employing a hollow polymer inclusion membrane (HPIM) was developed. In this method, a HPIM was prepared by casting a solution of the desired proportions of cellulose acetate (CTA), tris(2-ethylhexyl)phosphate (TEHP) and di-(2-ethylhexyl)phosphoric acid (D2EHPA) in dichloromethane on glass capillary tubing. Three basic drugs namely amphetamine, methamphetamine, and 3,4-methylenedioxy-N-methylamphetamine (MDMA) were selected as model analytes to evaluate the extraction performance of this new approach. The drugs were extracted from human plasma samples, through a 20μm thickness HPIM, to an aqueous acceptor solution inside the lumen of the hollow membrane. Parameters affecting the extraction efficiency were investigated in detail. Under the optimized conditions, enrichment factors in the range of 97-103-fold were obtained from 3mL of sample solution with a 10min extraction time and an applied voltage of 300V across the HPIM. The detection limits of the method for the three drugs were in the range of 1.0-2.5ng/mL (at a signal/noise ratio of three), with relative standard deviations of between 6.4% and 7.9%. When the method was applied to spiked plasma samples, the relative recoveries ranged from 99.2% to 100.8%. Enrichment factors of 103, 99 and 97 were obtained for amphetamine, methamphetamine, and MDMA, respectively. A comparison was also made between the newly developed approach and EME using supported liquid membranes (SLM) as well as standard sample preparation methods (liquid-liquid extraction) used by the Toxicology Unit, Department of Chemistry, Malaysia.
    Matched MeSH terms: Organophosphates/chemistry
  2. Alshishani A, Makahleh A, Yap HF, Gubartallah EA, Salhimi SM, Saad B
    Talanta, 2016 Dec 01;161:398-404.
    PMID: 27769423 DOI: 10.1016/j.talanta.2016.08.067
    A new sample preparation method, ion-pair vortex assisted liquid-liquid microextraction (VALLME-BE), for the determination of a highly polar anti-diabetic drug (metformin) in plasma sample was developed. The VALLME-BE was performed by diluting the plasma in borate buffer and extracted to 150µL 1-octanol containing 0.2M di-(2-ethylhexyl)phosphoric acid as intermediate phase. The drug was next back-extracted into 20µL of 0.075M HCl solution. The effects of pH, ion-pair concentration, type of organic solvent, volume of extraction phases, ionic strength, vortexing and centrifugation times on the extraction efficiency were investigated. The optimum conditions were at pH 9.3, 60s vortexing and 2min centrifugation. The microextract, contained metformin and buformin (internal standard), was directly injected into a HPLC unit using C1 column (250mm×4.6mm×10µm) and detected at 235nm. The method was validated and calibration curve was linear with r2>0.99 over the range of 20-2000µgL-1. The limits of detection and quantitation were 1.4 and 4.1µgL-1, respectively. The accuracy was within 94.8-108% of the nominal concentration. The relative standard deviation for inter- and intra-day precision was less than 10.8%. The method was conveniently applied for the determination of metformin in plasma samples.
    Matched MeSH terms: Organophosphates/chemistry*
  3. Lee LY, Morad N, Ismail N, Talebi A, Rafatullah M
    Int J Mol Sci, 2020 Sep 18;21(18).
    PMID: 32962106 DOI: 10.3390/ijms21186860
    This study investigates the separation of two heavy metals, Cd(II) and Cu(II), from the mixed synthetic feed using a liquid-liquid extraction. The current study uses tri-octyl methylammonium chloride (Aliquat 336) as the extractant (with tributyl phosphate (TBP) as a phase modifier), diluted in toluene, in order to investigate the selective extraction of Cd(II) over Cu(II) ions. We investigate the use of ethylenediaminetetraacetic acid (EDTA) as a masking agent for Cu(II), when added in aqueous feed, for the selective extraction of Cd(II). Five factors that influence the selective extraction of Cd(II) over Cu(II) (the equilibrium pH (pHeq), Aliquat 336 concentration (Aliquat 336), TBP concentration (TBP), EDTA concentration (EDTA), and organic to aqueous ratio (O:A)) were analyzed. Results from a 25-1 fractional factorial design show that Aliquat 336 significantly influenced Cd(II) extraction, whereas EDTA was statistically significant for the antagonistic effect on the E% of Cu(II) in the same system. Moreover, results from optimization experiment showed that the optimum conditions are Aliquat 336 concentration of 99.64 mM and EDTA concentration of 48.86 mM-where 95.89% of Cd(II) was extracted with the least extracted Cu(II) of 0.59%. A second-order model was fitted for optimization of Cd(II) extraction with a R2 value of 0.998, and ANOVA results revealed that the model adequately fitted the data at a 5% significance level. Interaction between Aliquat 336 and Cd(II) has been proven via FTIR qualitative analysis, whereas the addition of TBP does not affect the extraction mechanism.
    Matched MeSH terms: Organophosphates/chemistry
  4. Che Sulaiman IS, Chieng BW, Osman MJ, Ong KK, Rashid JIA, Wan Yunus WMZ, et al.
    Mikrochim Acta, 2020 01 15;187(2):131.
    PMID: 31940088 DOI: 10.1007/s00604-019-3893-8
    This review (with 99 refs.) summarizes the progress that has been made in colorimetric (i.e. spectrophotometric) determination of organophosphate pesticides (OPPs) using gold and silver nanoparticles (NPs). Following an introduction into the field, a first large section covers the types and functions of organophosphate pesticides. Methods for colorimetric (spectrophotometric) measurements including RGB techniques are discussed next. A further section covers the characteristic features of gold and silver-based NPs. Syntheses and modifications of metal NPs are covered in section 5. This is followed by overviews on enzyme inhibition-based assays, aptamer-based assays and chemical (non-enzymatic) assays, and a discussion of specific features of colorimetric assays. Several Tables are presented that give an overview on the wealth of methods and materials. A concluding section addresses current challenges and discusses potential future trends and opportunities. Graphical abstractSchematic representation of organophosphate pesticide determinations based on aggregation of nanoparticles (particular silver or gold nanoparticles). This leads to a color change which can be determined visually and monitored by a red shift in the absorption spectrum.
    Matched MeSH terms: Organophosphates/chemistry
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links