Butylparaben is an ubiquitous environmental endocrine disruptor, that is commonly used in cosmetics and personal care product due to its anti-microbial properties. Butylparaben has been shown to cause developmental toxicity, endocrine and metabolic disorders and immune diseases. However, little is known about the impact on female fertility, especially oocyte quality. In the present study, we reported that butylparaben influenced female fertility by showing the disturbed oocyte meiotic capacity and fertilization potential. Specifically, butylparaben results in the oocyte maturation arrest by impairing spindle/chromosome structure and microtubule stability. Besides, butylparaben results in fertilization failure by impairing the dynamics of Juno and ovastacin and the sperm binding ability. Last, single-cell transcriptome analysis showed that butylparaben-induced oocyte deterioration was caused by mitochondrial dysfunction, which led to the accumulation of ROS and occurrence of apoptosis. Collectively, our study indicates that mitochondrial dysfunction and redox perturbation is the major cause of the weakened female fertility expoesd to butylparaben.
Complete elucidation of fertilization process at molecular level is one of the unresolved challenges in sexual reproduction studies, and understanding the molecular mechanism is crucial in overcoming difficulties in infertility and unsuccessful in vitro fertilization. Sperm-oocyte interaction is one of the most remarkable events in fertilization process, and deficiency in protein-protein interactions which mediate this interaction is a major cause of unexplained infertility. Due to detection of how the various defects of sperm-oocyte interaction can affect fertilization failure, different experimental methods have been applied. This review summarizes the current understanding of sperm-egg interaction mechanism during fertilization and also accumulates the different types of sperm-egg interaction abnormalities and their association with infertility. Several detection approaches regarding sperm-egg protein interactions and the associated defects are reviewed in this paper.
The 1-acylglycerol-3-phosphate acyltransferase (AGPAT) acts as a crucial enzyme in the process of triacylglycerol (TAG) synthesis, enabling the acylation of lysophosphatidic acid (LPA) into phosphatidic acid (PA). In order to decode the distinctive roles of AGPAT isoforms in the TAG production pathway, three AGPAT isoforms were detected for the first time in the Chinese mitten crab Eriocheir sinensis (Es-agpat2, Es-agpat3, and Es-agpat4). The mRNA levels of Es-agpat2 and Es-agpat4 demonstrated a conspicuous presence in the hepatopancreas, with subsequent high levels in the heart, muscle, and thoracic ganglion. On the other hand, the thoracic ganglion exhibited abundant levels of Es-agpat3, while other tissues recorded relatively low expression levels. Observing the molting cycle of E. sinensis, the hepatopancreas showed minimum expression levels of Es-agpat2 and Es-agpat4 at stage A/B. A peak at stage C was noted, which was then followed by a gradual drop until stage E. For the ovarian development cycle, stage II witnessed the maximum expression level of Es-agpat2 and Es-agpat4, succeeded by a sharp fall in stage III. After this, there was an increasing trend from stage III up to stage V. Expression of Es-agpat3 in the hepatopancreas was consistently lower than Es-agpat2 and Es-agpat4 during either the molting or ovarian development. However, in terms of ovarian expression, Es-agpat3 outperformed Es-agpat2 and Es-agpat4. It exhibited a steep increase in expression, peaking at stage II and subsequently diminishing. In situ hybridization (ISH) revealed that in stages II and IV hepatopancreas, Es-agpat4-mRNA was primarily located in fibrillar cells (F cell) and resorptive cells (R cell), with no signal from Es-agpat3. During stage II of ovarian development, both Es-agpat3-mRNA and Es-agpat4-mRNA were located in the cytoplasm of previtellogenic oocyte (PRO) and endogenous vitellogenic oocyte (EN), with no expression at stage IV. Additionally, the silencing of Es-agpat2 and Es-agpat4 caused a downward trend in the expression levels of all subsequent genes in the E. sinensis TAG synthesis pathway. To sum up, these findings suggest that the three Es-agpats may have unique functions in TAG synthesis during either the molting process or ovarian maturation of E. sinensis.
Elucidation of the sperm-egg interaction at the molecular level is one of the unresolved problems in sexual reproduction, and understanding the molecular mechanism is crucial in solving problems in infertility and failed in vitro fertilization (IVF). Many molecular interactions in the form of protein-protein interactions (PPIs) mediate the sperm-egg membrane interaction. Due to the complexity of the problem such as difficulties in analyzing in vivo membrane PPIs, many efforts have failed to comprehensively elucidate the fusion mechanism and the molecular interactions that mediate sperm-egg membrane fusion. The main purpose of this study was to reveal possible protein interactions and associated molecular function during sperm-egg interaction using a protein interaction network approach. Different databases have been used to construct the human sperm-egg interaction network. The constructed network revealed new interactions. These included CD151 and CD9 in human oocyte that interact with CD49 in sperm, and CD49 and ITGA4 in sperm that interact with CD63 and CD81, respectively, in the oocyte. These results showed that the different integrins in sperm may be involved in human sperm-egg interaction. It was also suggested that sperm ADAM2 plays a role as a protein candidate involved in sperm-egg membrane interaction by interacting with CD9 in the oocyte. Interleukin-4 receptor activity, receptor signaling protein tyrosine kinase activity, and manganese ion transmembrane transport activity are the major molecular functions in sperm-egg interaction protein network. The disease association analysis indicated that sperm-egg interaction defects are also reflected in other disease networks such as cardiovascular, hematological, and breast cancer diseases. By analyzing the network, we identified the major molecular functions and disease association genes in sperm-egg interaction protein. Further experimental studies will be required to confirm the significance of these new computationally resolved interactions and the genetic links between sperm-egg interaction abnormalities and the associated disease.
The γ-aminobutyric acid (GABA) A receptor is composed of a variety of subunits and combinations and shows a characteristic distribution in the CNS. To date, 20 subunits of the GABA A receptor have been cloned: α1-6, β1-4, γ1-3, δ, π, ε , Θ, and ρ1-3. Oocyte of Xenopus laevis is one of the most frequently used heterologous expression systems, which are used to design and analyze specific combinations of GABA A receptor subunits. In oocytes, a certain GABA A receptor function is studied only by comparing the amplitude of the response to GABA and other drugs by physiological and pharmacological methods. According to the studies on Xenopus laevis oocytes, the α1β2γ2S receptor combination is mostly used. The α1-containing receptors mediate sedative and anticonvulsant acts. The results of studies on oocytes show that PKA, NKCC1, P2X3 receptors, and GABA A receptor-associated protein, etc., are existing systems that show different reactivity to the GABA A receptors. The GABA A receptor subunits contain distinct binding sites for BZDs, neurosteroids, general anesthetics, etc., which are responsible for the numerous functions of the GABA A receptor. A variety of other drugs, such as topiramate, TG41, (+)- and (-)-borneol, apigenin, and 6-methylflavone could also have modulatory effects on the GABA A receptors. Some of the different models and hypotheses on GABA A receptor structure and function have been achieved by using the two-electrode voltage clamp method in oocytes.
Low dose stimulation (LS) is emerging as an alternative regime in assisted reproductive technology (ART). This study aimed to compare the cost-effectiveness of LS to the high dose GnRH antagonist (Atg) regime.
The leading indicator for successful outcomes in in-vitro fertilization (IVF) is the quality of gametes in oocytes and sperm. Thus, advanced research aims to highlight the parameter in assessing these qualities - DNA fragmentation in sperm and oocyte development capacity (ODC) via evaluation of microenvironments involving its maturation process. Regarding oocytes, most evidence reveals the role of cumulus cells as non-invasive methods in assessing their development competency, mainly via gene expression evaluation. Our review aims to consolidate the evidence of GDF-9 derivatives, the HAS2, GREM1, and PTGS2 gene expression in cumulus cells used as ODC markers in relevant publications and tailored to current IVF outcomes. In addition to that, we also added the bioinformatic analysis in our review to strengthen the evidence aiming for a better understanding of the pathways and cluster of the genes of interest - HAS2, GREM1, and PTGS2 in cumulus cell level. Otherwise, the current non-invasive method can be used in exploring various causes of infertility that may affect these gene expressions at the cumulus cell level. Nevertheless, this method can also be used in assessing the ODC in various cohorts of women or as an improvement of markers following targeted tools or procedures by evaluating the advancement of these gene expressions following the targeted intervention.
Mitragyna speciosa Korth is known for its euphoric properties and is frequently used for recreational purposes. Several poisoning and fatal cases involving mitragynine have been reported but the underlying causes remain unclear. Human ether-a-go-go-related gene (hERG) encodes the cardiac IKr current which is a determinant of the duration of ventricular action potentials and QT interval. On the other hand, IK1, a Kir current mediated by Kir2.1 channel and IKACh, a receptor-activated Kir current mediated by GIRK channel are also known to be important in maintaining the cardiac function. This study investigated the effects of mitragynine on the current, mRNA and protein expression of hERG channel in hERG-transfected HEK293 cells and Xenopus oocytes. The effects on Kir2.1 and GIRK channels currents were also determined in the oocytes. The hERG tail currents following depolarization pulses were inhibited by mitragynine with an IC50 value of 1.62μM and 1.15μM in the transfected cell line and Xenopus oocytes, respectively. The S6 point mutations of Y652A and F656A attenuated the inhibitor effects of mitragynine, indicating that mitragynine interacts with these high affinity drug-binding sites in the hERG channel pore cavity which was consistent with the molecular docking simulation. Interestingly, mitragynine does not affect the hERG expression at the transcriptional level but inhibits the protein expression. Mitragynine is also found to inhibit IKACh current with an IC50 value of 3.32μM but has no significant effects on IK1. Blocking of both hERG and GIRK channels may cause additive cardiotoxicity risks.
A new proteomics technology has been implemented to study the protein repertoires of developing oocytes of giant grouper (Epinephelus lanceolatus). Knowledge of the chemical composition and physiochemical properties of vitellogenin (Vtg) is necessary to interpret the functional and biological properties attributed during ovulation. Vtg, as a biomarker indicator in sex determination, has been analyzed to determine the sex and maturational status of fish in the absence of the gonad tissue. A male giant grouper was induced by 2 mg/kg of 17ß-estradiol (E2), and blood was sampled at days 0, 1, 3, 5, and 10. SDS-PAGE 1D electrophoresis was used to analyze Vtg protein, and Vtg identification was done with 4800 Plus MALDI TOF/TOF™ mass spectrophotometer (Applied Biosystems/MDS SCIEX, USA). Meanwhile, MS/MS de novo sequencing identified the proteins by matching sequences of tryptic peptides to the known sequences of other species. Vtg was confirmed by MASCOT at 95% significant level, and molecular mass was 187 kDa. Protein resolved on SDS-PAGE as a double band of approximately the same mass as determined with MALDI-TOF. The N-terminal sequences and identification of Vtg were also determined. The potential of using MS methods to understand the structure and function of Vtg is discussed.
Mouse oocytes respond to DNA damage by arresting in meiosis I through activity of the Spindle Assembly Checkpoint (SAC) and DNA Damage Response (DDR) pathways. It is currently not known if DNA damage is the primary trigger for arrest, or if the pathway is sensitive to levels of DNA damage experienced physiologically. Here, using follicular fluid from patients with the disease endometriosis, which affects 10% of women and is associated with reduced fertility, we find raised levels of Reactive Oxygen Species (ROS), which generate DNA damage and turn on the DDR-SAC pathway. Only follicular fluid from patients with endometriosis, and not controls, produced ROS and damaged DNA in the oocyte. This activated ATM kinase, leading to SAC mediated metaphase I arrest. Completion of meiosis I could be restored by ROS scavengers, showing this is the primary trigger for arrest and offering a novel clinical therapeutic treatment. This study establishes a clinical relevance to the DDR induced SAC in oocytes. It helps explain how oocytes respond to a highly prevalent human disease and the reduced fertility associated with endometriosis.
1 Candoxin (MW 7334.6), a novel toxin isolated from the venom of the Malayan krait Bungarus candidus, belongs to the poorly characterized subfamily of nonconventional three-finger toxins present in Elapid venoms. The current study details the pharmacological effects of candoxin at the neuromuscular junction. 2 Candoxin produces a novel pattern of neuromuscular blockade in isolated nerve-muscle preparations and the tibialis anterior muscle of anaesthetized rats. In contrast to the virtually irreversible postsynaptic neuromuscular blockade produced by curaremimetic alpha-neurotoxins, the neuromuscular blockade produced by candoxin was rapidly and completely reversed by washing or by the addition of the anticholinesterase neostigmine. 3 Candoxin also produced significant train-of-four fade during the onset of and recovery from neuromuscular blockade, both, in vitro and in vivo. The fade phenomenon has been attributed to a blockade of putative presynaptic nicotinic acetylcholine receptors (nAChRs) that mediate a positive feedback mechanism and maintain adequate transmitter release during rapid repetitive stimulation. In this respect, candoxin closely resembles the neuromuscular blocking effects of d-tubocurarine, and differs markedly from curaremimetic alpha-neurotoxins that produce little or no fade. 4 Electrophysiological experiments confirmed that candoxin produced a readily reversible blockade (IC(50) approximately 10 nM) of oocyte-expressed muscle (alphabetagammadelta) nAChRs. Like alpha-conotoxin MI, well known for its preferential binding to the alpha/delta interface of the muscle (alphabetagammadelta) nAChR, candoxin also demonstrated a biphasic concentration-response inhibition curve with a high- (IC(50) approximately 2.2 nM) and a low- (IC(50) approximately 98 nM) affinity component, suggesting that it may exhibit differential affinities for the two binding sites on the muscle (alphabetagammadelta) receptor. In contrast, curaremimetic alpha-neurotoxins have been reported to antagonize both binding sites with equal affinity.