Displaying publications 1 - 20 of 45 in total

Abstract:
Sort:
  1. Jain V, Foo SH, Chooi S, Moss C, Goodwin R, Berland S, et al.
    Eur J Hum Genet, 2023 Dec;31(12):1421-1429.
    PMID: 37704779 DOI: 10.1038/s41431-023-01447-0
    Börjeson-Forssman-Lehmann syndrome (BFLS) is an X-linked intellectual disability syndrome caused by variants in the PHF6 gene. We ascertained 19 individuals from 15 families with likely pathogenic or pathogenic PHF6 variants (11 males and 8 females). One family had previously been reported. Six variants were novel. We analysed the clinical and genetic findings in our series and compared them with reported BFLS patients. Affected males had classic features of BFLS including intellectual disability, distinctive facies, large ears, gynaecomastia, hypogonadism and truncal obesity. Carrier female relatives of affected males were unaffected or had only mild symptoms. The phenotype of affected females with de novo variants overlapped with the males but included linear skin hyperpigmentation and a higher frequency of dental, retinal and cortical brain anomalies. Complications observed in our series included keloid scarring, digital fibromas, absent vaginal orifice, neuropathy, umbilical hernias, and talipes. Our analysis highlighted sex-specific differences in PHF6 variant types and locations. Affected males often have missense variants or small in-frame deletions while affected females tend to have truncating variants or large deletions/duplications. Missense variants were found in a minority of affected females and clustered in the highly constrained PHD2 domain of PHF6. We propose recommendations for the evaluation and management of BFLS patients. These results further delineate and extend the genetic and phenotypic spectrum of BFLS.
    Matched MeSH terms: Obesity/genetics
  2. Apalasamy YD, Mohamed Z
    Hum Genet, 2015 Apr;134(4):361-74.
    PMID: 25687726 DOI: 10.1007/s00439-015-1533-x
    Obesity is a complex and multifactorial disease that occurs as a result of the interaction between "obesogenic" environmental factors and genetic components. Although the genetic component of obesity is clear from the heritability studies, the genetic basis remains largely elusive. Successes have been achieved in identifying the causal genes for monogenic obesity using animal models and linkage studies, but these approaches are not fruitful for polygenic obesity. The developments of genome-wide association approach have brought breakthrough discovery of genetic variants for polygenic obesity where tens of new susceptibility loci were identified. However, the common SNPs only accounted for a proportion of heritability. The arrival of NGS technologies and completion of 1000 Genomes Project have brought other new methods to dissect the genetic architecture of obesity, for example, the use of exome genotyping arrays and deep sequencing of candidate loci identified from GWAS to study rare variants. In this review, we summarize and discuss the developments of these genetic approaches in human obesity.
    Matched MeSH terms: Obesity/genetics*
  3. Ahmad S, Drag MH, Mohamad Salleh S, Cai Z, Nielsen MO
    Physiol Genomics, 2023 Sep 01;55(9):392-413.
    PMID: 37458462 DOI: 10.1152/physiolgenomics.00128.2022
    We have previously demonstrated that pre- and early postnatal malnutrition in sheep induced depot- and sex-specific changes in adipose morphological features, metabolic outcomes, and transcriptome in adulthood, with perirenal (PER) as the major target followed by subcutaneous (SUB) adipose tissue. We aimed to identify coexpressed and hub genes in SUB and PER to identify the underlying molecular mechanisms contributing to the early nutritional programming of adipose-related phenotypic outcomes. Transcriptomes of SUB and PER of male and female adult sheep with different pre- and early postnatal nutrition histories were used to construct networks of coexpressed genes likely to be functionally associated with pre- and early postnatal nutrition histories and phenotypic traits using weighted gene coexpression network analysis. The modules from PER showed enrichment of cell cycle regulation, gene expression, transmembrane transport, and metabolic processes associated with both sexes' prenatal nutrition. In SUB (only males), a module of enriched adenosine diphosphate metabolism and development correlated with prenatal nutrition. Sex-specific module enrichments were found in PER, such as chromatin modification in the male network but histone modification and mitochondria- and oxidative phosphorylation-related functions in the female network. These sex-specific modules correlated with prenatal nutrition and adipocyte size distribution patterns. Our results point to PER as a primary target of prenatal malnutrition compared to SUB, which played only a minor role. The prenatal programming of gene expression and cell cycle, potentially through epigenetic modifications, might be underlying mechanisms responsible for observed changes in PER expandability and adipocyte-size distribution patterns in adulthood in both sexes.
    Matched MeSH terms: Obesity/genetics
  4. Say YH
    J Physiol Anthropol, 2017 Jun 14;36(1):25.
    PMID: 28615046 DOI: 10.1186/s40101-017-0142-x
    BACKGROUND: Despite the fact that insertions/deletions (INDELs) are the second most common type of genetic variations and variable number tandem repeats (VNTRs) represent a large portion of the human genome, they have received far less attention than single nucleotide polymorphisms (SNPs) and larger forms of structural variation like copy number variations (CNVs), especially in genome-wide association studies (GWAS) of complex diseases like polygenic obesity. This is exemplified by the vast amount of review papers on the role of SNPs and CNVs in obesity, its related traits (like anthropometric measurements, biochemical variables, and eating behavior), and its related complications (like hypertension, hypertriglyceridemia, hypercholesterolemia, and insulin resistance-collectively known as metabolic syndrome). Hence, this paper reviews the types of INDELs and VNTRs that have been studied for association with obesity and its related traits and complications. These INDELs and VNTRs could be found in the obesity loci or genes from the earliest GWAS and candidate gene association studies, like FTO, genes in the leptin-proopiomelanocortin pathway, and UCP2/3. Given the important role of the brain serotonergic and dopaminergic reward system in obesity susceptibility, the association of INDELs and VNTRs in these neurotransmitters' metabolism and transport genes with obesity is also reviewed. Next, the role of INS VNTR in obesity and its related traits is questionable, since recent large-scale studies failed to replicate the earlier positive associations. As obesity results in chronic low-grade inflammation of the adipose tissue, the proinflammatory cytokine gene IL1RA and anti-inflammatory cytokine gene IL4 have VNTRs that are implicated in obesity. A systemic proinflammatory state in combination with activation of the renin-angiotensin system and decreased nitric oxide bioavailability as found in obesity leads to endothelial dysfunction. This explains why VNTR and INDEL in eNOS and ACE, respectively, could be predisposing factors of obesity. Finally, two novel genes, DOCK5 and PER3, which are involved in the regulation of the Akt/MAPK pathway and circadian rhythm, respectively, have VNTRs and INDEL that might be associated with obesity.

    SHORT CONCLUSION: In conclusion, INDELs and VNTRs could have important functional consequences in the pathophysiology of obesity, and research on them should be continued to facilitate obesity prediction, prevention, and treatment.

    Matched MeSH terms: Obesity/genetics*
  5. Vasanth Rao VRB, Candasamy M, Bhattamisra SK
    Diabetes Metab Syndr, 2019 05 07;13(3):2112-2120.
    PMID: 31235145 DOI: 10.1016/j.dsx.2019.05.004
    Obesity is a complex disorder that is linked to many coexisting disorders. Recent epidemiological data have suggested that the prevalence of obesity is at an all-time high, growing to be one of the world's biggest problems. There are several mechanisms on how individuals develop obesity which includes genetic and environmental factors. Not only does obesity contribute to other health issues but it also greatly affects the quality of life, physical ability, mental strength and imposes a huge burden in terms of healthcare costs. Along with that, obesity is associated with the risk of mortality and has been shown to reduce the median survival rate. Obesity is basically when the body is not able to balance energy intake and output. When energy intake exceeds energy expenditure, excess calories will be stored as fat leading to weight gain and eventually obesity. The therapeutic market for treating obesity is composed of many different interventions from lifestyle intervention, surgical procedures to pharmacotherapeutic approaches. All of these interventions have their respective benefits and disadvantages and are specifically prescribed to a patient based on the severity of their obesity as well as the existence of other health conditions. This review discusses the genetic and environmental causes of obesity along with the recent developments in anti-obesity therapies.
    Matched MeSH terms: Obesity/genetics*
  6. Tang H, Jiang L, Stolzenberg-Solomon RZ, Arslan AA, Beane Freeman LE, Bracci PM, et al.
    Cancer Epidemiol Biomarkers Prev, 2020 Sep;29(9):1784-1791.
    PMID: 32546605 DOI: 10.1158/1055-9965.EPI-20-0275
    BACKGROUND: Obesity and diabetes are major modifiable risk factors for pancreatic cancer. Interactions between genetic variants and diabetes/obesity have not previously been comprehensively investigated in pancreatic cancer at the genome-wide level.

    METHODS: We conducted a gene-environment interaction (GxE) analysis including 8,255 cases and 11,900 controls from four pancreatic cancer genome-wide association study (GWAS) datasets (Pancreatic Cancer Cohort Consortium I-III and Pancreatic Cancer Case Control Consortium). Obesity (body mass index ≥30 kg/m2) and diabetes (duration ≥3 years) were the environmental variables of interest. Approximately 870,000 SNPs (minor allele frequency ≥0.005, genotyped in at least one dataset) were analyzed. Case-control (CC), case-only (CO), and joint-effect test methods were used for SNP-level GxE analysis. As a complementary approach, gene-based GxE analysis was also performed. Age, sex, study site, and principal components accounting for population substructure were included as covariates. Meta-analysis was applied to combine individual GWAS summary statistics.

    RESULTS: No genome-wide significant interactions (departures from a log-additive odds model) with diabetes or obesity were detected at the SNP level by the CC or CO approaches. The joint-effect test detected numerous genome-wide significant GxE signals in the GWAS main effects top hit regions, but the significance diminished after adjusting for the GWAS top hits. In the gene-based analysis, a significant interaction of diabetes with variants in the FAM63A (family with sequence similarity 63 member A) gene (significance threshold P < 1.25 × 10-6) was observed in the meta-analysis (P GxE = 1.2 ×10-6, P Joint = 4.2 ×10-7).

    CONCLUSIONS: This analysis did not find significant GxE interactions at the SNP level but found one significant interaction with diabetes at the gene level. A larger sample size might unveil additional genetic factors via GxE scans.

    IMPACT: This study may contribute to discovering the mechanism of diabetes-associated pancreatic cancer.

    Matched MeSH terms: Obesity/genetics*
  7. Fan SH, Say YH
    J Physiol Anthropol, 2014;33:15.
    PMID: 24947733 DOI: 10.1186/1880-6805-33-15
    BACKGROUND: This study was to investigate the prevalence of single nucleotide polymorphisms (SNPs) in leptin gene LEP (A19G and G2548A) and leptin receptor gene LEPR (K109R and Q223R) and their association with fasting plasma leptin level (PLL) and obesity in a Malaysian suburban population in Kampar, Perak.
    METHODS: Convenience sampling was performed with informed consents, and the study sample was drawn from patients who were patrons of the Kampar Health Clinic. A total of 408 subjects (mean age, 52.4 +/- 13.7 years; 169 men, 239 women; 190 obese, 218 non-obese; 148 Malays, 177 ethnic Chinese, 83 ethnic Indians) participated. Socio-demographic data and anthropometric measurements were taken, and genotyping was performed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP).
    RESULTS: The LEP A19G, G2548A and LEPR K109R, Q223R variant allele frequencies were 0.74, 0.67 and 0.61, 0.79, respectively. The genotype and allele distributions of these gene variants were significantly different among ethnic groups, but not among body mass index (BMI) classes. Subjects with LEPR K109 and Q223 allele had significantly higher systolic blood pressure and adiposity indices after adjustment for ethnicity (higher BMI, total body and subcutaneous fat; lower skeletal muscle percentage). Subjects with LEPR 109R allele had lower PLL than their wild-type allele counterparts. The influence of LEP A19G and G2548A SNPs on blood pressures, anthropometrics, and PLL was not evident. Interestingly, synergistic effect of the LEP and LEPR SNPs was observed as subjects homozygous for all four SNPs studied exhibited significantly higher subcutaneous fat and PLL than those with other genotype combinations.
    CONCLUSIONS: The LEP and LEPR SNPs in this study may not be an obesity marker among Malaysians in this population, but were associated with ethnicity. Our findings suggest that each of these SNPs contributes to minor but significant variation in obesity-related traits and in combination they display synergistic effects on subcutaneous fat and PLL.
    Matched MeSH terms: Obesity/genetics*
  8. Ng ZY, Veerapen MK, Hon WM, Lim RL
    Pediatr Int, 2014 Oct;56(5):689-97.
    PMID: 24628746 DOI: 10.1111/ped.12336
    BACKGROUND: Leptin (LEP) G-2548A (rs7799039), leptin receptor (LEPR) Q223R (rs1137101) and tumor necrosis factor (TNF)-α G-308A (rs1800629) gene variants have been reported to be associated with obesity, although results for subjects from different countries have been controversial. The aim of this study was to determine the prevalence of overweight and obesity in Malaysian adolescents and the association of these polymorphisms with overweight and obese or over-fat adolescents.
    METHODS: A total of 613 adolescents (241 Malay, 219 Chinese, 153 Indian) were enrolled. Anthropometric measurements of body mass index (BMI) and body fat percentage were used to classify subjects as controls (non-overweight/obese or normal fat) or as cases (overweight/obese or over-fat). Genomic DNA was extracted from oral buccal mucosa cells for genotyping using polymerase chain reaction-restriction fragment length polymorphism and data obtained were statistically analyzed.
    RESULTS: A total of 23.3% of subjects were overweight/obese whereas 11.4% were over-fat; there were significantly more overweight/obese and over-fat Indian and Malay adolescents compared to Chinese (P < 0.001). A allele was the minor one for LEPR Q223R and TNF-α G-308A in all ethnic groups, whereas G allele was minor for LEP G-2548A in Chinese and Malay adolescents, except for Indian adolescents. Indian male adolescents with AA genotype for LEP G-2548A were associated with overweight/obesity (P = 0.025; odds ratio, 3.64; 95% confidence interval: 1.15-11.54). Despite the lack of association observed for LEPR Q223R and TNF-α G-308A, Indian and Chinese subjects with AA risk genotype for LEPR Q223R/LEP G-2548A and TNF-α G-308A/LEP G-2548A, respectively, had increased mean BMI (P = 0.049, P = 0.016).
    CONCLUSIONS: Genotype distribution and association of these polymorphisms with overweight/obesity vary between ethnic groups and genders. Nevertheless, the LEP G-2548A risk allele may be associated with overweight/obese Indian male adolescents in Malaysia.
    KEYWORDS: adolescents; body fat percentage; body mass index; leptin; leptin receptor; single nucleotide polymorphism; tumor necrosis factor-α
    Matched MeSH terms: Pediatric Obesity/genetics*
  9. Zain SM, Mohamed Z, Jalaludin MY, Fauzi F, Hamidi A, Zaharan NL
    Pharmacogenet Genomics, 2015 Oct;25(10):501-10.
    PMID: 26240981 DOI: 10.1097/FPC.0000000000000164
    Orexigenic actions mediated by neuropeptide-Y (NPY) promote body weight regulation. Genetic variations in the NPY gene could therefore influence susceptibility to obesity, but results have been conflicting. We have carried out, for the first time, a case-control study to examine the effect of NPY rs16147 and rs5574 variants with the risk of obesity in Asians and also a meta-analysis to summarize the effect of these variants including that of the widely studied rs16139.
    Matched MeSH terms: Obesity/genetics*
  10. Apalasamy YD, Rampal S, Salim A, Moy FM, Su TT, Majid HA, et al.
    Biochem Genet, 2015 Jun;53(4-6):120-31.
    PMID: 25991560 DOI: 10.1007/s10528-015-9678-9
    Single nucleotide polymorphisms (SNP) in the resistin gene (RETN) are linked to obesity and resistin levels in various populations. However, results have been inconsistent. This study aimed to investigate association between polymorphisms in the resistin gene with obesity in a homogenous Malaysian Malay population. This study is also aimed to determine association between resistin levels with certain SNPs and haplotypes of RETN. A total of 631 Malaysian Malay subjects were included in this study and genotyping was carried out using Sequenom MassARRAY. There was no significant difference found in both allelic and genotype frequencies of each of the RETN SNPs between the obese and non-obese groups after Bonferroni correction. RETN rs34861192 and rs3219175 SNPs were significantly associated with log-resistin levels. The GG genotype carriers are found to have higher levels of log-resistin compared to A allele carriers. The RETN haplotypes (CAG, CGA and GA) were significantly associated with resistin levels. However, the haplotypes of the RETN gene were not associated with obesity. Resistin levels were not correlated to metabolic parameters such as body weight, waist circumference, body mass index, and lipid parameters. RETN SNPs and haplotypes are of apparent functional importance in the regulation of resistin levels but are not correlated with obesity and related markers.
    Matched MeSH terms: Obesity/genetics*
  11. Vohra MS, Ahmad B, Serpell CJ, Parhar IS, Wong EH
    Differentiation, 2020 08 23;115:62-84.
    PMID: 32891960 DOI: 10.1016/j.diff.2020.08.003
    Adipogenesis has been extensively studied using in vitro models of cellular differentiation, enabling long-term regulation of fat cell metabolism in human adipose tissue (AT) material. Many studies promote the idea that manipulation of this process could potentially reduce the prevalence of obesity and its related diseases. It has now become essential to understand the molecular basis of fat cell development to tackle this pandemic disease, by identifying therapeutic targets and new biomarkers. This review explores murine cell models and their applications for study of the adipogenic differentiation process in vitro. We focus on the benefits and limitations of different cell line models to aid in interpreting data and selecting a good cell line model for successful understanding of adipose biology.
    Matched MeSH terms: Obesity/genetics*
  12. Rahmadhani R, Zaharan NL, Mohamed Z, Moy FM, Jalaludin MY
    PLoS One, 2017;12(6):e0178695.
    PMID: 28617856 DOI: 10.1371/journal.pone.0178695
    BACKGROUND: The vitamin D receptor (VDR) gene is expressed abundantly in different tissues; including adipocytes and pancreatic beta cells. The rs1544410 or BsmI single nucleotide polymorphism (SNP) in the intronic region of the VDR gene has been previously associated with vitamin D levels, obesity and insulin resistance.

    AIMS: This study was aimed to examine the association between BsmI polymorphism and risk of vitamin D deficiency, obesity and insulin resistance in adolescents living in a tropical country.

    METHODS: Thirteen-year-old adolescents were recruited via multistage sampling from twenty-three randomly selected schools across the city of Kuala Lumpur, Malaysia (n = 941). Anthropometric measurements were obtained. Obesity was defined as body mass index higher than the 95th percentile of the WHO chart. Levels of fasting serum vitamin D (25-hydroxyvitamin D (25(OH)D)), glucose and insulin were measured. HOMA-IR was calculated as an indicator for insulin resistance. Genotyping was performed using the Sequenom MassARRAY platform (n = 807). The associations between BsmI and vitamin D, anthropometric parameters and HOMA-IR were examined using analysis of covariance and logistic regression.

    RESULT: Those with AA genotype of BsmI had significantly lower levels of 25(OH)D (p = 0.001) compared to other genotypes. No significant differences was found across genotypes for obesity parameters. The AA genotype was associated with higher risk of vitamin D deficiency (p = 0.03) and insulin resistance (p = 0.03) compared to GG. The A allele was significantly associated with increased risk of vitamin D deficiency compared to G allele (adjusted odds ratio (OR) = 1.63 (95% Confidence Interval (CI) 1.03-2.59, p = 0.04). In those with concurrent vitamin D deficiency, having an A allele significantly increased their risk of having insulin resistance compared to G allele (adjusted OR = 2.66 (95% CI 1.36-5.19, p = 0.004).

    CONCLUSION: VDR BsmI polymorphism was significantly associated with vitamin D deficiency and insulin resistance, but not with obesity in this population.

    Matched MeSH terms: Obesity/genetics*
  13. Ellulu MS, Jalambo MO
    Kathmandu Univ Med J (KUMJ), 2018 2 16;15(57):91-93.
    PMID: 29446373
    Urbanization has provided experimental settings for testing the interactive relationship between genetic background and changes in lifestyle and dietary patterns. The concept of gene-environment interaction was described by epidemic of obesity along with urbanization. Genome-wide association has identified several genes such as melanocortin-4 receptor that associates with environmental influences of obesity. Gene environment (GxE) interaction refers to modification by an environmental factor of the effect of a genetic variant on a phenotypic trait. GxE interactions can serve to modulate the adverse effects of a risk allele, or can exacerbate the genotype-phenotype relationship and increase risk.
    Matched MeSH terms: Obesity/genetics
  14. Mohanraj J, D'Souza UJA, Fong SY, Karkada IR, Jaiprakash H
    Int J Environ Res Public Health, 2022 Jul 21;19(14).
    PMID: 35886710 DOI: 10.3390/ijerph19148862
    Relative leptin resistance in childhood to absolute leptin resistance in maturity suggests sleep, eating behaviour, and the psychological state as probable causes. The current body of research provides inconclusive evidence linking G2548A and Q223R to obesity. Furthermore, we could find very little data that have observed the association between the environment and gene polymorphism, especially in the multiethnic population that exists in Malaysia. This study searched for a possible link between sleeping habits, eating behaviour, and stress indicators with plasma leptin and its genetic variation in young adult Malaysian healthcare students. The study involved 185 first- and second-year medical and dental students from a healthcare university. Polymerase Chain Reaction−Restriction Fragment Length Polymorphism(PCR-RFLP) determined the genotype, Enzyme Linked Immunoabsorbant Assay (ELISA) tested the serum leptin, and a self-administered questionnaire evaluated sleep, eating behaviour, and psychological condition. Gender and ethnicity are linked to fasting plasma leptin levels (p < 0.001). Plasma leptin also affects stress, anxiety, and sadness. Leptin (LEP) and Leptin Receptor (LEPR) polymorphisms were not associated with BMI, plasma leptin, sleep, eating behaviour, or psychological state. Young adult Malaysian Indians were obese and overweight, while Chinese were underweight. These findings imply overweight and obese participants were in stage I of leptin resistance and lifestyle change or leptin therapy could prevent them from becoming cripplingly obese as they age.
    Matched MeSH terms: Obesity/genetics
  15. Apalasamy YD, Moy FM, Rampal S, Bulgiba A, Mohamed Z
    Genet. Mol. Res., 2014;13(3):4904-10.
    PMID: 25062423 DOI: 10.4238/2014.July.4.4
    A genome-wide association study showed that the tagging single nucleotide polymorphism (SNP) rs7566605 in the insulin-induced gene 2 (INSIG2) was associated with obesity. Attempts to replicate this result in different populations have produced inconsistent findings. We aimed to study the association between the rs7566605 SNP with obesity and other metabolic parameters in Malaysian Malays. Anthropometric and obesity-related metabolic parameters and DNA samples were collected. We genotyped the rs7566605 polymorphism in 672 subjects using real-time polymerase chain reaction. No significant associations were found between the rs7566605 tagging SNP of INSIG2 with obesity or other metabolic parameters in the Malaysian Malay population. The INSIG2 rs7566605 SNP may not play a role in the development of obesity-related metabolic traits in Malaysian Malays.
    Matched MeSH terms: Obesity/genetics*
  16. Apalasamy YD, Rampal S, Salim A, Moy FM, Bulgiba A, Mohamed Z
    Mol Biol Rep, 2014 May;41(5):2917-21.
    PMID: 24449366 DOI: 10.1007/s11033-014-3147-0
    Studies have shown that single-nucleotide polymorphisms (SNPs) on the ADIPOQ gene have been linked with obesity and with adiponectin levels in various populations. Here, we aimed to investigate the association of ADIPOQ rs17366568 and rs3774261 SNPs with obesity and with adiponectin levels in Malaysian Malays. Obesity parameters and adiponectin levels were measured in 574 subjects. Genotyping was performed using real-time polymerase chain reaction and Sequenom MassARRAY. A significant genotypic association was observed between ADIPOQ rs17366568 and obesity. The frequencies of AG and AA genotypes were significantly higher in the obese group (11%) than in the non-obese group (5%) (P=0.024). The odds of A alleles occurring among the obese group were twice those among the non-obese group (odds ratio 2.15; 95% confidence interval 1.13-4.09). However, no significant association was found between allelic frequencies of ADIPOQ rs17366568 and obesity after Bonferroni correction (P>0.025) or between ADIPOQ rs3774261 and obesity both at allelic and genotypic levels. ADIPOQ SNPs were not significantly associated with log-adiponectin levels. GA, GG, and AG haplotypes of the ADIPOQ gene were not associated with obesity. We confirmed the previously reported association of ADIPOQ rs17366568 with the risk of obesity. ADIPOQ SNPs are not important modulators of adiponectin levels in this population.
    Matched MeSH terms: Obesity/genetics*
  17. Apalasamy YD, Ming MF, Rampal S, Bulgiba A, Mohamed Z
    Braz. J. Med. Biol. Res., 2012 Dec;45(12):1119-26.
    PMID: 22911346
    The common variants in the fat mass- and obesity-associated (FTO) gene have been previously found to be associated with obesity in various adult populations. The objective of the present study was to investigate whether the single nucleotide polymorphisms (SNPs) and linkage disequilibrium (LD) blocks in various regions of the FTO gene are associated with predisposition to obesity in Malaysian Malays. Thirty-one FTO SNPs were genotyped in 587 (158 obese and 429 non-obese) Malaysian Malay subjects. Obesity traits and lipid profiles were measured and single-marker association testing, LD testing, and haplotype association analysis were performed. LD analysis of the FTO SNPs revealed the presence of 57 regions with complete LD (D' = 1.0). In addition, we detected the association of rs17817288 with low-density lipoprotein cholesterol. The FTO gene may therefore be involved in lipid metabolism in Malaysian Malays. Two haplotype blocks were present in this region of the FTO gene, but no particular haplotype was found to be significantly associated with an increased risk of obesity in Malaysian Malays.
    Matched MeSH terms: Obesity/genetics*
  18. Chua HN, Fan SH, Say YH
    Med J Malaysia, 2012 Apr;67(2):234-5.
    PMID: 22822657 MyJurnal
    This study investigated the prevalence of the Melanocortin receptor 4 (MC4R) V1031 gene variant and its association with obesity among a cohort of 254 patients (101 males; 118 obese) attending the Kampar Health Clinic. Genotyping revealed the mutated I allele frequency of 0.02, no homozygous mutated (II), and similar distribution of V and I alleles across BMI groups, genders and ethnic groups. No significant difference was found for the means of anthropometric measurements between alleles. Prevalence of this gene variant among the Malaysian cohort was similar with previous populations (2-4% of mutated allele carrier), but was not associated with obesity.
    Matched MeSH terms: Obesity/genetics*
  19. Apalasamy YD, Ming MF, Rampal S, Bulgiba A, Mohamed Z
    Asia Pac J Public Health, 2015 Mar;27(2):NP154-65.
    PMID: 22199155 DOI: 10.1177/1010539511430250
    Recent findings have shown that the rs1042714 (Gln27Glu) single-nucleotide polymorphism (SNP) on the β2-adrenoceptor gene may predispose to obesity. The findings from other studies carried on different populations, however, have been inconsistent. The authors investigated the association between the rs1042714 SNP with obesity-related parameters. DNA of 672 Malaysian Malays was analyzed using real-time polymerase chain reaction. Univariate and multivariate linear regression analyses revealed significant associations between rs1042714 and diastolic blood pressure in the pooled Malaysian Malay subjects under additive and recessive models. After gender stratification, however, a significant association was found between the rs1042714 and triglyceride and the rs1042714 and log-transformed high-density lipoprotein cholesterol levels in Malaysian Malay men. No significant association was found between the SNP and log-transformed body mass index. This polymorphism may have an important role in the development of obesity-related traits in Malaysian Malays. Gender is an effect modifier for the effect of the rs1042714 polymorphism on obesity-related traits in Malaysian Malays.
    Matched MeSH terms: Obesity/genetics*
  20. Boon Yin K, Najimudin N, Muhammad TS
    Biochem Biophys Res Commun, 2008 Jun 27;371(2):177-9.
    PMID: 18413145 DOI: 10.1016/j.bbrc.2008.04.013
    Peroxisome proliferator-activated receptor gamma (PPARgamma) is a ligand activated transcription factor, plays many essential roles of biological function in higher organisms. The PPARgamma is mainly expressed in adipose tissue. It regulates the transcriptional activity of genes by binding with other transcription factor. The PPARgamma coding region has been found to be closest to that of monkey in ours and other research groups. Thus, monkey is a more suitable animal model for future PPARgamma studying, although mice and rat are frequently being used. The PPARgamma is involved in regulating alterations of adipose tissue masses result from changes in mature adipocyte size and/or number through a complex interplay process called adipogenesis. However, the role of PPARgamma in negatively regulating the process of adipogenesis remains unclear. This review may help we investigate the differential expression of key transcription factor in adipose tissue in response to visceral obesity-induced diet in vivo. The study may also provide valuable information to define a more appropriate physiological condition in adipogenesis which may help to prevent diseases cause by negative regulation of the transcription factors in adipose tissue.
    Matched MeSH terms: Obesity/genetics*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links