Displaying publications 1 - 20 of 34 in total

Abstract:
Sort:
  1. Sarmani SB, Abugassa I, Hamzah A, Yahya MD
    Biol Trace Elem Res, 1999;71-72:365-76.
    PMID: 10676512
    Medicinal herb preparations prescribed for specific treatment purposes were purchased from markets and were analyzed by instrumental neutron activation analysis with k0 standardization. Then, 500-700 mg of each sample was pelletized under a pressure of six tones and irradiated together with monitors for alpha and neutron flux ratio determinations for about 6 h in a thermal flux of 2.29 x 10(12) n/cm2/s. The accuracy of the method was established by analyzing standard reference materials. Twenty-nine elements, Ag, As, Au, Ba, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Mn, Mo, Na, Rb, Sb, Sc, Se, Sm, Sr, Th, U, Yb, and Zn, were measured in all the samples, and Hg was detected in some samples, with good accuracy and reproducibility. The concentration of elements determined was found to vary depending on the composition of the herbs used. Although the trend linking the element of the medicinal plants to its curative abilities could not be clearly determined, this study showed that the toxic elements found in the samples were below the levels prescribed by health regulations. Nevertheless, such data are important to understand the pharmacological action and the exact mechanisms of action and formation of active constituents for each medicinal plant and to decide the dosage of the herbs used in the final formulation.
    Matched MeSH terms: Neutron Activation Analysis/methods*; Neutron Activation Analysis/standards
  2. Elias MS, Ibrahim S, Samuding K, Kantasamy N, Daung JAD, Rahman SA, et al.
    Data Brief, 2019 Aug;25:103983.
    PMID: 31194012 DOI: 10.1016/j.dib.2019.103983
    This study is on the distribution of rare earth elements (REEs) concentrations in sediments collected from 113 sampling locations of Linggi River. The analysis of sediment samples was performed by Neutron Activation Analysis (NAA) and Inductively Coupled Plasma - Mass spectrometer (ICP-MS). The main compositions of Linggi river sediments were silt > sand > clay. The mean of total concentrations of REEs (ΣREE), light REEs (ΣLREE) and heavy REEs (ΣHREE) in Linggi sediment were 249, 228, and 22.0 mg/kg, respectively. The results of Linggi river sediment were normalised to several reference shale values. REEs of Linggi river sediments were comparable to MUQ reference shale values. Enrichment factors (EF) of mean values indicate Linggi River sediment can be categorised as having minor to moderate enrichment.
    Matched MeSH terms: Neutron Activation Analysis
  3. Sadiq Aliyu A, Musa Y, Liman MS, Abba HT, Chaanda MS, Ngene NC, et al.
    Appl Radiat Isot, 2018 Jan;131:36-40.
    PMID: 29107886 DOI: 10.1016/j.apradiso.2017.10.046
    The Keffi area hosts abundant pegmatite bodies as a result of the surrounding granitic intrusions. Keffi is part of areas that are geologically classified as North Central Basement Complex. Data on the mineralogy and mineralogical zonation of the Keffi pegmatite are scanty. Hence the need to understand the geology and mineralogical zonation of Keffi pegmatites especially at different depth profiles is relevant as a study of the elemental composition of the pegmatite is essential for the estimation of its economic viability. Here, the relative standardization method of instrumental neutron activation analysis (INAA) has been used to investigate the vertical deviations of the elemental concentrations of rare earth elements (REEs) at different depth profile of Keffi pegmatite. This study adopted the following metrics in investigating the vertical variations of REEs concentrations. Namely, the total contents of rare earth elements (∑REE); ratio of light to heavy rare earth elements (LREE/HREE), which defines the enrichment or depletion of REEs; europium anomaly (Eu/Sm); La/Lu ratio relative to chondritic meteorites. The study showed no significant variations in the total content of rare elements between the vertical depth profiles (100-250m). However, higher total concentrations of REEs (~ 92.65ppm) were recorded at the upper depth of the pegmatite and the europium anomaly was consistently negative at all the depth profiles suggesting that the Keffi pegmatite is enriched with light REEs.
    Matched MeSH terms: Neutron Activation Analysis
  4. Tan HY, Yeong CH, Wong YH, McKenzie M, Kasbollah A, Md Shah MN, et al.
    Nucl Med Biol, 2020;90-91:55-68.
    PMID: 33039974 DOI: 10.1016/j.nucmedbio.2020.09.005
    Theranostics in nuclear medicine refers to personalized patient management that involves targeted therapy and diagnostic imaging using a single or combination of radionuclide (s). The radionuclides emit both alpha (α) or beta (β-) particles and gamma (γ) rays which possess therapeutic and diagnostic capabilities, respectively. However, the production of these radionuclides often faces difficulties due to high cost, complexity of preparation methods and that the products are often sourced far from the healthcare facilities, hence losing activity due to radioactive decay during transportation. Subject to the availability of a nuclear reactor within an accessible distance from healthcare facilities, neutron activation is the most practical and cost-effective route to produce radionuclides suitable for theranostic purposes. Holmium-166 (166Ho), Lutetium-177 (177Lu), Rhenium-186 (186Re), Rhenium-188 (188Re) and Samarium-153 (153Sm) are some of the most promising neutron-activated radionuclides that are currently in clinical practice and undergoing clinical research for theranostic applications. The aim of this paper is to review the physical characteristics, current clinical applications and future prospects of these neutron activated radionuclides in theranostics. The production, physical properties, validated clinical applications and clinical studies for each neutron-activated radionuclide suitable for theranostic use in nuclear medicine are reviewed in this paper.
    Matched MeSH terms: Neutron Activation Analysis
  5. Yavar AR, Sarmani SB, Wood AK, Fadzil SM, Radir MH, Khoo KS
    Appl Radiat Isot, 2011 May;69(5):762-7.
    PMID: 21295987 DOI: 10.1016/j.apradiso.2011.01.005
    Determination of thermal to fast neutron flux ratio (f(fast)) and fast neutron flux (ϕ(fast)) is required for fast neutron reactions, fast neutron activation analysis, and for correcting interference reactions. The f(fast) and subsequently ϕ(fast) were determined using the absolute method. The f(fast) ranged from 48 to 155, and the ϕ(fast) was found in the range 1.03×10(10)-4.89×10(10) n cm(-2) s(-1). These values indicate an acceptable conformity and applicable for installation of the fast neutron facility at the MNA research reactor.
    Matched MeSH terms: Neutron Activation Analysis
  6. Ibrahim N
    Bull Environ Contam Toxicol, 1992 Nov;49(5):663-9.
    PMID: 1392304
    Matched MeSH terms: Neutron Activation Analysis
  7. Md Suhaimi Elias, Mohd Suhaimi Hamzah, Mohd Suhaimi Hamzah, Siong, Wee Boon, Nazaratul Ashifa Abdullah Salim
    MyJurnal
    Assessment of source and sediment quality was carried out on marine sediments collected from the Tuanku Abdul Rahman National Park. Enrichment factors (EF), pollution load index (PLI) and geo-accumulation index (Igeo) were used to identify the sources of pollution, degree of contamination and sediment quality, respectively. Elemental analyses of marine sediment samples were performed by using the Instrumental Neutron Activation Analysis (INAA). Results from the Tunku Abdul Rahman National Park of Sabah indicated that most of the elements are considered to be from lithological or natural origin with EF values of less than 2 except for As (10 stations), Cr (3 stations), Lu (5 stations), Mg (2 stations), Sb (6 stations) and U (3 stations). For the sediment quality, most of the study area can be categorised as unpolluted for most of the elements (Igeo value < 2) except for As, Cr, Lu, Mg, Sb and U. A few study areas were slightly low contaminated with As, Cr, Lu, Mg, Sb and U. The contamination of As, Cr, Lu, Mg, Sb and U in the study area can be categorised as moderate with Igeo values ranged from 1 to 2. Meanwhile, the results of PLI value for sediment were ranged from 0.93 to 1.47 (PLI < 50) indicating there are not required to perform drastic rectification measures for the screening of the elements in the Tunku Abdul Rahman Park. Overall, assessment of the sediment quality at the Tunku Abdul Rahman National Park showed a few elements such as As, Cr, Lu, Mg, Sb and U were slightly enriched while most of the elements were similar to background values.
    Matched MeSH terms: Neutron Activation Analysis
  8. Yavar, A.R., Sarmani, S.B., Khalafi, H., Wood, A.K., Khoo, K.S.
    MyJurnal
    Present work shows the development of nuclear technology in Malaysia and highlights its
    applications that have been developed by using the instrumental neutron activation analysis
    (INAA) method. In addition, present study exhibits a comprehensive review of INAA for
    calculation of neutron flux parameters and concentration of elements. The INAA is a
    powerful method to analyse the sample which identifies qualitative and quantitative of
    elements present in a sample. The INAA is a working instrument with advantages of
    experimental simplicity, high accuracy, excellent flexibility with respect to irradiation and
    counting conditions, and suitability for computerization. In INAA, sample is irradiated and
    measured directly. In practical. INAA is based on an absolute, relative and single-comparator
    standardisation method. The INAA has been developed since 1982 when the
    TRIGA Mark II reactor of Malaysia has commissioned. The absolute method was less
    utilised, the relative method has been used since 1982, and the ko-INAA method is derived
    from single-comparator standardization method has been developed since 1996 in Malaysia.
    The relative method, because of its advantages, such as high accuracy, easy for using, has
    many applications in Malaysia. Currently, local universities and Malaysian Nuclear Agency
    (MNA) research reactor use INAA method in Malaysia.
    Matched MeSH terms: Neutron Activation Analysis
  9. Yunos MA, Hussain SA, Yusoff HM, Abdullah J
    Appl Radiat Isot, 2014 Sep;91:57-61.
    PMID: 24907683 DOI: 10.1016/j.apradiso.2014.05.015
    Radioactive particle tracking (RPT) has emerged as a promising and versatile technique that can provide rich information about a variety of multiphase flow systems. However, RPT is not an off-the-shelf technique, and thus, users must customize RPT for their applications. This paper presents a simple procedure for preparing radioactive tracer particles created via irradiation with neutrons from the TRIGA Mark II research reactor. The present study focuses on the performance evaluation of encapsulated gold and scandium particles for applications as individual radioactive tracer particles using qualitative and quantitative neutron activation analysis (NAA) and an X-ray microcomputed tomography (X-ray Micro-CT) scanner installed at the Malaysian Nuclear Agency.
    Matched MeSH terms: Neutron Activation Analysis
  10. Ashraf A, Saion E, Gharibshahi E, Kamari HM, Kong YC, Hamzah MS, et al.
    Appl Radiat Isot, 2016 Jan;107:17-23.
    PMID: 26405840 DOI: 10.1016/j.apradiso.2015.09.004
    A study was carried out on the concentration of REEs (Dy, Sm, Eu,Yb, Lu, La and Ce) that are present in the core marine sediments of East Malaysia from three locations at South China Sea and one location each at Sulu Sea and Sulawesi Sea. The sediment samples were collected at a depth of between 49 and 109 m, dried, and crushed to powdery form. The entire core sediments prepared for Instrumental Neutron Activation Analysis (INAA) were weighted approximately 0.0500 g to 0.1000 g for short irradiation and 0.1500 g to 0.2000 g for long irradiation. The samples were irradiated with a thermal neutron flux of 4.0×10(12) cm(-2) s(-1) in a TRIGA Mark II research reactor operated at 750 kW. Blank samples and standard reference materials SL-1 were also irradiated for calibration and quality control purposes. It was found that the concentration of REEs varies in the range from 0.11 to 36.84 mg/kg. The chondrite-normalized REEs for different stations suggest that all the REEs are from similar origins. There was no significant REEs contamination as the enrichment factors normalized for Fe fall in the range of 0.42-2.82.
    Matched MeSH terms: Neutron Activation Analysis
  11. Nazaratul Ashifa Abdullah Salim, Md Suhaimi Elias, Abdul Khalik Wood, Ezwiza Sanuri, Mohd Suhaimi Hamzah, Shamsiah Abd. Rahman
    MyJurnal
    Over 114 countries in the world grow rice and more than 50 countries have an annual rice production of 100,000 tonnes or more. Asian farmers produce about 90% of the global total rice production. Generally, there are two most common varieties of rice; cultivated and hill rice. Nowadays a lot of agriculture land is contaminated with toxic elements owing to the use of sludge or municipal compost, pesticides, fertilizers and emissions from municipal waste incinerators, car exhausts, residues from metalliferous mines, and smelting industries. The distribution and concentration of several toxic elements in grains particularly rice has lately become a big concern. A study to determine the concentrations of some elements in a few varieties of rice in our local market using Instrumental Neutron Activation Analysis has been performed by Waste and Environmental Technology Division, Malaysian Nuclear Agency. A total of 15 elements were measured. The method was validated by analysing the Standard Reference Material SRM-1568a (Rice Flour) and SRM-1573a (Tomato Leaves) of NIST. The measured concentrations of major and minor elements were analysed in terms of the average intake of nutrient content and comparison of several toxic elements to other studied values.
    Matched MeSH terms: Neutron Activation Analysis
  12. Nashriyah Mat, Norhayati Ngah, Khairil Mahmud, Nurrul Akmar Rosni, Shamsiah Abd Rahman, Khairuddin Abdul Rahim
    MyJurnal
    Effects of cultural practice under different habitats, of well-managed monoculture plantation and growing wild under rubber trees, were studied in Aquilaria malaccensis (Karas) leaves. This study was carried out on Karas growing in these two habitats each from Lipis, Pahang and Sepang, Selangor areas in Malaysia; under the control and induced treatments. The parameters studied include wet and dry weight of 50 matured leaves, iron and zinc elemental contents in leaf, iron and zinc uptakes from soil, and leaf and soil moisture contents. Iron and zinc were analysed in Karas leaves and soil by using Instrumental Neutron Activation Analysis (INAA) technique.
    Matched MeSH terms: Neutron Activation Analysis
  13. Omar, M., Hamzah, M.S., Wood, A.K.
    MyJurnal
    A study to measure the concentrations of long-lived radionuclides of the uranium and thorium series in naturally occurring radioactive materials (NORM) wastes was carried out using gamma spectrometry and neutron activation analysis methods. It was found that radionuclides in the NORM wastes of the oil/gas production and ores/minerals processing industries were not in equilibrium. The 226 Ra/ 238 U and 228 Ra/ 232 Th ratios were between 0.001 and 2220 indicating that the concentrations of daughters radionuclides ( 226 Ra, 228 Ra) were very low or very high compared to the parent radionuclides ( 238 U, 232 Th) in the NORM wastes.
    Matched MeSH terms: Neutron Activation Analysis
  14. Ashraf A, Saion E, Gharibshahi E, Kamari HM, Yap CK, Hamzah MS, et al.
    Appl Radiat Isot, 2017 Apr;122:96-105.
    PMID: 28129589 DOI: 10.1016/j.apradiso.2017.01.006
    A study was carried out on the distribution and enrichment of trace elements in the core marine sediments of East Malaysia from three stations at South China Sea and one station each at Sulu Sea and Sulawesi Sea. Five stations of sediment cores were recovered and the vertical concentration profiles of six elements namely Br, Cs, Hf, Rb, Ta, and V were determined using the instrumental neutron activation analysis. The enrichment factor, geoaccumulation index and the modified degree of contamination were used to calculate the anthropogenic and pollution status of the elements in the samples. Except for Cs and Hf, which by the enrichment factor are categorized from minimum enrichment to moderate enrichment in all stations and for V and Rb in Sulu Sea and Sulawesi Sea, which are categorized minimum enrichment, other elements are found to be no enrichment at all stations. The geoaccumulation index of Hf in one station shows moderately polluted and for other elements are unpolluted. However, the modified degree values of all samples are less than 1, suggesting very low contamination of elements found in all the stations.
    Matched MeSH terms: Neutron Activation Analysis
  15. Elias MS, Ibrahim S, Samuding K, Rahman SA, Wo YM
    MethodsX, 2018;5:454-465.
    PMID: 30090704 DOI: 10.1016/j.mex.2018.05.001
    Fourteen sediment samples were collected along Linggi River, Malaysia. Neutron activation analysis (NAA) and inductively coupled plasma-mass spectrometry (ICP-MS) techniques were used in the determination of toxic element contents. The results showed that As, Cd and Sb concentrations were higher at all sampling stations, with enrichment factor values ranging from 17.7 to 75.0, 2.1 to 19.5 and 6.6 to 28.4, respectively. Elements of Pb and Zn) were also enriched at most of the sampling stations whilst Cu, Cr and Ni were shown as background levels. The sediment of Linggi River can be categorised as low (<8.0) to very high degree of contamination (>32.0). The mean concentrations of elements viz. Cd, Cr, Ni, Pb, Sb and Zn were lower than the threshold effect level (TEL) of FSQGs values except for As. The concentration of As (arsenic) was higher than PEL and PEC of FSQGs values.
    Matched MeSH terms: Neutron Activation Analysis
  16. Ashraf A, Saion E, Gharibshahi E, Yap CK, Kamari HM, Elias MS, et al.
    Appl Radiat Isot, 2018 Feb;132:222-231.
    PMID: 29183762 DOI: 10.1016/j.apradiso.2017.11.012
    Fifty-five core marine sediments from three locations at South China Sea and one location each at Sulu Sea and Sulawesi Sea of coastal East Malaysia were analyzed for heavy metals by instrumental neutron activation analysis and inductively coupled plasma mass spectroscopy. The enrichment factor and the modified degree of contamination were used to calculate the anthropogenic and pollution status of the elements in the samples. The enrichment factor of As, Cd, Cr, Cu, Ni, Pb, and Zn varied from 0.42-4.26, 0.50-2.34, 0.31-0.82, 0.20-0.61, 0.91-1.92, 0.23-1.52, and 0.90-1.28, respectively, with the modified degree of contamination values below 0.6. Comparative data showed that coastal East Malaysia has low levels of contamination.
    Matched MeSH terms: Neutron Activation Analysis
  17. Tan HY, Wong YH, Kasbollah A, Md Shah MN, Abdullah BJJ, Perkins AC, et al.
    Nucl Med Commun, 2022 Apr 01;43(4):410-422.
    PMID: 35045548 DOI: 10.1097/MNM.0000000000001529
    PURPOSE: Hepatic radioembolization is an effective minimally invasive treatment for primary and metastatic liver cancers. Yttrium-90 [90Y]-labelled resin or glass beads are typically used as the radioembolic agent for this treatment; however, these are not readily available in many countries. In this study, novel samarium-153 oxide-loaded polystyrene ([153Sm]Sm2O3-PS) microspheres were developed as a potential alternative to 90Y microspheres for hepatic radioembolization.

    METHODS: The [152Sm]Sm2O3-PS microspheres were synthesized using solid-in-oil-in-water solvent evaporation. The microspheres underwent neutron activation using a 1 MW open-pool research reactor to produce radioactive [153Sm]Sm2O3-PS microspheres via 152Sm(n,γ)153Sm reaction. Physicochemical characterization, gamma spectroscopy and in-vitro radionuclide retention efficiency were carried out to evaluate the properties and stability of the microspheres before and after neutron activation.

    RESULTS: The [153Sm]Sm2O3-PS microspheres achieved specific activity of 5.04 ± 0.52 GBq·g-1 after a 6 h neutron activation. Scanning electron microscopy and particle size analysis showed that the microspheres remained spherical with an average diameter of ~33 μm before and after neutron activation. No long half-life radionuclide and elemental impurities were found in the samples. The radionuclide retention efficiencies of the [153Sm]Sm2O3-PS microspheres at 550 h were 99.64 ± 0.07 and 98.76 ± 1.10% when tested in saline solution and human blood plasma, respectively.

    CONCLUSIONS: A neutron-activated [153Sm]Sm2O3-PS microsphere formulation was successfully developed for potential application as a theranostic agent for liver radioembolization. The microspheres achieved suitable physical properties for radioembolization and demonstrated high radionuclide retention efficiency in saline solution and human blood plasma.

    Matched MeSH terms: Neutron Activation Analysis
  18. Abugassa I, Sarmani SB, Samat SB
    Appl Radiat Isot, 1999 Jun;50(6):989-94.
    PMID: 10355102
    This paper focuses on the evaluation of the k0 method of instrumental neutron activation analysis in biological materials. The method has been applied in multielement analysis of human hair standard reference materials from IAEA, No. 085, No. 086 and from NIES (National Institute for Environmental Sciences) No. 5. Hair samples from people resident in different parts of Malaysia, in addition to a sample from Japan, were analyzed. In addition, human kidney stones from members of the Malaysian population have been analyzed for minor and trace elements. More than 25 elements have been determined. The samples were irradiated in the rotary rack (Lazy Susan) at the TRIGA Mark II reactor of the Malaysian Institute for Nuclear Technology and Research (MINT). The accuracy of the method was ascertained by analysis of other reference materials, including 1573 tomato leaves and 1572 citrus leaves. In this method the deviation of the 1/E1+ alpha epithermal neutron flux distribution from the 1/E law (P/T ratio) for true coincidence effects of the gamma-ray cascade and the HPGe detector efficiency were determined and corrected for.
    Matched MeSH terms: Neutron Activation Analysis/methods
  19. Ibrahim N
    Appl Radiat Isot, 1994 Aug;45(8):897-8.
    PMID: 8081326
    This study determines the trace metal content in Anadara Granosa L., a popular seafood amongst South-East-Asians. Using the technique of instrumental neutron activation analysis (INAA) identification has been made of the presence of 17 trace metals including elements which are classified as toxic (As, Br, Cs) and those which are rare-earths (Eu, Ce, Lu, Tb, Yb).
    Matched MeSH terms: Neutron Activation Analysis/methods*
  20. Ng KH, Bradley DA, Looi LM
    Appl Radiat Isot, 1995 6 1;46(6-7):629-30.
    PMID: 7633385
    Matched MeSH terms: Neutron Activation Analysis/methods
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links