Displaying all 7 publications

Abstract:
Sort:
  1. Mohamed Yusof NIS, Awaluddin NA, Fauzi FM
    Cent Nerv Syst Agents Med Chem, 2023;23(2):95-108.
    PMID: 37496242 DOI: 10.2174/1871524923666230726102846
    BACKGROUND: In Alzheimer's Disease (AD), chemokines recruit pro-inflammatory mediators and increase the aggregation of both Aβ (amyloid-β) plaque and neurofibrillary tangles (NFTs). Chemokine receptor 5 (CCR5) has been demonstrated to be involved in neuroinflammation and neuroimmunology, where its inhibition was shown to enhance memory, plasticity and learning.

    OBJECTIVE: In this study, compounds that inhibit CCR5 obtained from the ChEMBL database were analysed, specifically for whether specific substructures and physicochemical properties are correlated to biological activity.

    METHODS: Clustering was first performed to group 1,237 compounds into 10 clusters based on the similarities of their structure. Then, molecular docking was performed on 10 compounds representative of each cluster. Lastly, the Spearman correlation was computed between physicochemical properties and biological activity.

    RESULTS: Results showed that potent CCR5 inhibitors tend to: (i) be larger in size (molecular weight of more than 500 g/mol), (ii) bind at the deep hydrophobic pocket, mostly through π-π stacking and (iii) have more than 1 aromatic ring. The larger size may aid in reaching the deep hydrophobic pocket. However, these requirements may lead to the violation of more than 1 Lipinski's Rule of 5.

    CONCLUSION: Future studies should include analyses of the analogues or derivatives of the representative compounds to further expand on the findings here and establish the structure-activity relationship for CCR5 inhibition. This would aid in the development of new AD drugs since drug discovery and development of AD drugs are suffering from high attrition.

    Matched MeSH terms: Neurofibrillary Tangles/metabolism
  2. Rajah Kumaran K, Yunusa S, Perimal E, Wahab H, Müller CP, Hassan Z
    J Alzheimers Dis, 2023;91(2):507-530.
    PMID: 36502321 DOI: 10.3233/JAD-220666
    The aging population increases steadily because of a healthy lifestyle and medical advancements in healthcare. However, Alzheimer's disease (AD) is becoming more common and problematic among older adults. AD-related cases show an increasing trend annually, and the younger age population may also be at risk of developing this disorder. AD constitutes a primary form of dementia, an irreversible and progressive brain disorder that steadily damages cognitive functions and the ability to perform daily tasks. Later in life, AD leads to death as a result of the degeneration of specific brain areas. Currently, the cause of AD is poorly understood, and there is no safe and effective therapeutic agent to cure or slow down its progression. The condition is entirely preventable, and no study has yet demonstrated encouraging findings in terms of treatment. Identifying this disease's pathophysiology can help researchers develop safe and efficient therapeutic strategies to treat this ailment. This review outlines and discusses the pathophysiology that resulted in the development of AD including amyloid-β plaques, tau neurofibrillary tangles, neuroinflammation, oxidative stress, cholinergic dysfunction, glutamate excitotoxicity, and changes in neurotrophins level may sound better based on the literature search from Scopus, PubMed, ScienceDirect, and Google Scholar. Potential therapeutic strategies are discussed to provide more insights into AD mechanisms by developing some possible pharmacological agents for its treatment.
    Matched MeSH terms: Neurofibrillary Tangles/metabolism
  3. Rad SK, Arya A, Karimian H, Madhavan P, Rizwan F, Koshy S, et al.
    Drug Des Devel Ther, 2018;12:3999-4021.
    PMID: 30538427 DOI: 10.2147/DDDT.S173970
    The pathophysiological link between type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) has been suggested in several reports. Few findings suggest that T2DM has strong link in the development process of AD, and the complete mechanism is yet to be revealed. Formation of amyloid plaques (APs) and neurofibrillary tangles (NFTs) are two central hallmarks in the AD. APs are the dense composites of β-amyloid protein (Aβ) which accumulates around the nerve cells. Moreover, NFTs are the twisted fibers containing hyperphosphorylated tau proteins present in certain residues of Aβ that build up inside the brain cells. Certain factors contribute to the aetiogenesis of AD by regulating insulin signaling pathway in the brain and accelerating the formation of neurotoxic Aβ and NFTs via various mechanisms, including GSK3β, JNK, CamKII, CDK5, CK1, MARK4, PLK2, Syk, DYRK1A, PPP, and P70S6K. Progression to AD could be influenced by insulin signaling pathway that is affected due to T2DM. Interestingly, NFTs and APs lead to the impairment of several crucial cascades, such as synaptogenesis, neurotrophy, and apoptosis, which are regulated by insulin, cholesterol, and glucose metabolism. The investigation of the molecular cascades through insulin functions in brain contributes to probe and perceive progressions of diabetes to AD. This review elaborates the molecular insights that would help to further understand the potential mechanisms linking T2DM and AD.
    Matched MeSH terms: Neurofibrillary Tangles/metabolism*
  4. Jalil MA, Kamoldilok S, Saktioto T, Ong CT, Yupapin PP
    PMID: 22384850 DOI: 10.3109/10731199.2012.657203
    In this investigation, a new design based on a PANDA ring resonator as an optical trapping tool for tangle protein, molecular motor storage, and delivery is proposed. The optical vortices are generated and the trapping mechanism is controlled in the same way as the conventional optical tweezers. The trapping force is produced by a combination of the gradient field and scattering photons. The required molecular volume is trapped and moved dynamically within the molecular network. The tangle protein and molecular motor can be transported and delivered to the required destinations for Alzheimer's diagnosis by molecular buffer and bus network.
    Matched MeSH terms: Neurofibrillary Tangles/metabolism*
  5. Leong YQ, Ng KY, Chye SM, Ling APK, Koh RY
    Metab Brain Dis, 2020 01;35(1):11-30.
    PMID: 31811496 DOI: 10.1007/s11011-019-00516-y
    Extracellular senile plaques and intracellular neurofibrillary tangles are the neuropathological findings of the Alzheimer's disease (AD). Based on the amyloid cascade hypothesis, the main component of senile plaques, the amyloid-beta (Aβ) peptide, and its derivative called amyloid precursor protein (APP) both have been found to place their central roles in AD development for years. However, the recent therapeutics have yet to reverse or halt this disease. Previous evidence demonstrates that the accumulation of Aβ peptides and APP can exert neurotoxicity and ultimately neuronal cell death. Hence, we discuss the mechanisms of excessive production of Aβ peptides and APP serving as pathophysiologic stimuli for the initiation of various cell signalling pathways including apoptosis, necrosis, necroptosis and autophagy which lead to neuronal cell death. Conversely, the activation of such pathways could also result in the abnormal generation of APP and Aβ peptides. An elucidation of actions of APP and its metabolite, Aβ, could be vital in suggesting novel therapeutic opportunities.
    Matched MeSH terms: Neurofibrillary Tangles/metabolism*
  6. Yanagisawa D, Ibrahim NF, Taguchi H, Morikawa S, Kato T, Hirao K, et al.
    J Neurosci Res, 2018 05;96(5):841-851.
    PMID: 29063641 DOI: 10.1002/jnr.24188
    Aggregation of tau into neurofibrillary tangles (NFTs) is characteristic of tauopathies, including Alzheimer's disease. Recent advances in tau imaging have attracted much attention because of its potential contributions to early diagnosis and monitoring of disease progress. Fluorine-19 magnetic resonance imaging (19 F-MRI) may be extremely useful for tau imaging once a high-quality probe has been formulated. In this investigation, a novel fluorine-19-labeling compound has been developed as a probe for tau imaging using 19 F-MRI. This compound is a buta-1,3-diene derivative with a polyethylene glycol side chain bearing a CF3 group and is known as Shiga-X35. Female rTg4510 mice (a mouse model of tauopathy) and wild-type mice were intravenously injected with Shiga-X35, and magnetic resonance imaging of each mouse's head was conducted in a 7.0-T horizontal-bore magnetic resonance scanner. The 19 F-MRI in rTg4510 mice showed an intense signal in the forebrain region. Analysis of the signal intensity in the forebrain region revealed a significant accumulation of fluorine-19 magnetic resonance signal in the rTg4510 mice compared with the wild-type mice. Histological analysis showed fluorescent signals of Shiga-X35 binding to the NFTs in the brain sections of rTg4510 mice. Data collected as part of this investigation indicate that 19 F-MRI using Shiga-X35 could be a promising tool to evaluate tau pathology in the brain.
    Matched MeSH terms: Neurofibrillary Tangles/metabolism
  7. Candasamy M, Mohamed Elhassan SA, Kumar Bhattamisra S, Hua WY, Sern LM, Binti Busthamin NA, et al.
    Panminerva Med, 2020 Sep;62(3):155-163.
    PMID: 32208408 DOI: 10.23736/S0031-0808.20.03879-3
    Alzheimer's disease (AD) and type 2 diabetes mellitus (T2D) are two of the most commonly occurring diseases worldwide, especially among the elderly population. In particular, the increased prevalence of AD has imposed tremendous psychological and financial burdens on society. Growing evidence suggests both AD and T2D share many similar pathological traits. AD is characterized as a metabolic disorder whereby the glucose metabolism in the brain is impaired. This closely resembles the state of insulin resistance in T2D. Insulin resistance of the brain has been heavily implicated two prominent pathological features of AD, Aβ plaques and neurofibrillary tangles. Brain insulin resistance is known to elicit a positive feed-forward loop towards the formation of AD pathology in which they affect each other in a synergistic manner. Other physiological traits shared between the two diseases include inflammation, oxidative stress and autophagic dysfunction, which are also closely associated with brain insulin resistance. In this review and depending on these underlying pathways that link these two diseases, we have discussed the potential therapeutic implications of AD. By expanding our knowledge of the overlapping pathophysiology involved, we hope to provide scientific basis to the discovery of novel therapeutic strategies to improve the clinical outcomes of AD in terms of diagnosis and treatment.
    Matched MeSH terms: Neurofibrillary Tangles/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links