Displaying all 14 publications

Abstract:
Sort:
  1. Pagano R, Salamian A, Zielinski J, Beroun A, Nalberczak-Skóra M, Skonieczna E, et al.
    Mol Psychiatry, 2023 Feb;28(2):733-745.
    PMID: 36357670 DOI: 10.1038/s41380-022-01849-4
    Alcohol use disorder (AUD) is a chronic and fatal disease. The main impediment of the AUD therapy is a high probability of relapse to alcohol abuse even after prolonged abstinence. The molecular mechanisms of cue-induced relapse are not well established, despite the fact that they may offer new targets for the treatment of AUD. Using a comprehensive animal model of AUD, virally-mediated and amygdala-targeted genetic manipulations by CRISPR/Cas9 technology and ex vivo electrophysiology, we identify a mechanism that selectively controls cue-induced alcohol relapse and AUD symptom severity. This mechanism is based on activity-regulated cytoskeleton-associated protein (Arc)/ARG3.1-dependent plasticity of the amygdala synapses. In humans, we identified single nucleotide polymorphisms in the ARC gene and their methylation predicting not only amygdala size, but also frequency of alcohol use, even at the onset of regular consumption. Targeting Arc during alcohol cue exposure may thus be a selective new mechanism for relapse prevention.
    Matched MeSH terms: Nerve Tissue Proteins/metabolism
  2. Ch'ng ES, Kumanogoh A
    Mol. Cancer, 2010;9:251.
    PMID: 20858260 DOI: 10.1186/1476-4598-9-251
    Sema4D, also known as CD100, is a protein belonging to class IV semaphorin. Its physiologic roles in the immune and nervous systems have been extensively explored. However, the roles of Sema4D have extended beyond these traditionally studied territories. Via interaction with its high affinity receptor Plexin-B1, Sema4D-Plexin-B1 involvement in tumor progression is strongly implied. Here, we critically review and delineate the Sema4D-Plexin-B1 interaction in many facets of tumor progression: tumor angiogenesis, regulation of tumor-associated macrophages and control of invasive growth. We correlate the in vitro and in vivo experimental data with the clinical study outcomes, and present a molecular mechanistic basis accounting for the intriguingly contradicting results from these recent studies.
    Matched MeSH terms: Nerve Tissue Proteins/metabolism*
  3. Hirano M, Takada Y, Wong CF, Yamaguchi K, Kotani H, Kurokawa T, et al.
    J Biol Chem, 2017 06 02;292(22):9365-9381.
    PMID: 28377503 DOI: 10.1074/jbc.M117.778829
    Voltage-dependent Ca2+ channels (VDCCs) mediate neurotransmitter release controlled by presynaptic proteins such as the scaffolding proteins Rab3-interacting molecules (RIMs). RIMs confer sustained activity and anchoring of synaptic vesicles to the VDCCs. Multiple sites on the VDCC α1 and β subunits have been reported to mediate the RIMs-VDCC interaction, but their significance is unclear. Because alternative splicing of exons 44 and 47 in the P/Q-type VDCC α1 subunit CaV2.1 gene generates major variants of the CaV2.1 C-terminal region, known for associating with presynaptic proteins, we focused here on the protein regions encoded by these two exons. Co-immunoprecipitation experiments indicated that the C-terminal domain (CTD) encoded by CaV2.1 exons 40-47 interacts with the α-RIMs, RIM1α and RIM2α, and this interaction was abolished by alternative splicing that deletes the protein regions encoded by exons 44 and 47. Electrophysiological characterization of VDCC currents revealed that the suppressive effect of RIM2α on voltage-dependent inactivation (VDI) was stronger than that of RIM1α for the CaV2.1 variant containing the region encoded by exons 44 and 47. Importantly, in the CaV2.1 variant in which exons 44 and 47 were deleted, strong RIM2α-mediated VDI suppression was attenuated to a level comparable with that of RIM1α-mediated VDI suppression, which was unaffected by the exclusion of exons 44 and 47. Studies of deletion mutants of the exon 47 region identified 17 amino acid residues on the C-terminal side of a polyglutamine stretch as being essential for the potentiated VDI suppression characteristic of RIM2α. These results suggest that the interactions of the CaV2.1 CTD with RIMs enable CaV2.1 proteins to distinguish α-RIM isoforms in VDI suppression of P/Q-type VDCC currents.
    Matched MeSH terms: Nerve Tissue Proteins/metabolism*
  4. Yang C, Li X, Li S, Chai X, Guan L, Qiao L, et al.
    J Cell Mol Med, 2019 03;23(3):1813-1826.
    PMID: 30565384 DOI: 10.1111/jcmm.14080
    Organotypic slice culture is a living cell research technique which blends features of both in vivo and in vitro techniques. While organotypic brain slice culture techniques have been well established in rodents, there are few reports on the study of organotypic slice culture, especially of the central nervous system (CNS), in chicken embryos. We established a combined in ovo electroporation and organotypic slice culture method to study exogenous genes functions in the CNS during chicken embryo development. We performed in ovo electroporation in the spinal cord or optic tectum prior to slice culture. When embryonic development reached a specific stage, green fluorescent protein (GFP)-positive embryos were selected and fluorescent expression sites were cut under stereo fluorescence microscopy. Selected tissues were embedded in 4% agar. Tissues were sectioned on a vibratory microtome and 300 μm thick sections were mounted on a membrane of millicell cell culture insert. The insert was placed in a 30-mm culture dish and 1 ml of slice culture media was added. We show that during serum-free medium culture, the slice loses its original structure and propensity to be strictly regulated, which are the characteristics of the CNS. However, after adding serum, the histological structure of cultured-tissue slices was able to be well maintained and neuronal axons were significantly longer than that those of serum-free medium cultured-tissue slices. As the structure of a complete single neuron can be observed from a slice culture, this is a suitable way of studying single neuronal dynamics. As such, we present an effective method to study axon formation and migration of single neurons in vitro.
    Matched MeSH terms: Nerve Tissue Proteins/metabolism*
  5. Rivers C, Idris J, Scott H, Rogers M, Lee YB, Gaunt J, et al.
    BMC Biol, 2015 Dec 22;13:111.
    PMID: 26694817 DOI: 10.1186/s12915-015-0220-7
    BACKGROUND: SAFB1 is a RNA binding protein implicated in the regulation of multiple cellular processes such as the regulation of transcription, stress response, DNA repair and RNA processing. To gain further insight into SAFB1 function we used iCLIP and mapped its interaction with RNA on a genome wide level.

    RESULTS: iCLIP analysis found SAFB1 binding was enriched, specifically in exons, ncRNAs, 3' and 5' untranslated regions. SAFB1 was found to recognise a purine-rich GAAGA motif with the highest frequency and it is therefore likely to bind core AGA, GAA, or AAG motifs. Confirmatory RT-PCR experiments showed that the expression of coding and non-coding genes with SAFB1 cross-link sites was altered by SAFB1 knockdown. For example, we found that the isoform-specific expression of neural cell adhesion molecule (NCAM1) and ASTN2 was influenced by SAFB1 and that the processing of miR-19a from the miR-17-92 cluster was regulated by SAFB1. These data suggest SAFB1 may influence alternative splicing and, using an NCAM1 minigene, we showed that SAFB1 knockdown altered the expression of two of the three NCAM1 alternative spliced isoforms. However, when the AGA, GAA, and AAG motifs were mutated, SAFB1 knockdown no longer mediated a decrease in the NCAM1 9-10 alternative spliced form. To further investigate the association of SAFB1 with splicing we used exon array analysis and found SAFB1 knockdown mediated the statistically significant up- and downregulation of alternative exons. Further analysis using RNAmotifs to investigate the frequency of association between the motif pairs (AGA followed by AGA, GAA or AAG) and alternative spliced exons found there was a highly significant correlation with downregulated exons. Together, our data suggest SAFB1 will play an important physiological role in the central nervous system regulating synaptic function. We found that SAFB1 regulates dendritic spine density in hippocampal neurons and hence provide empirical evidence supporting this conclusion.

    CONCLUSIONS: iCLIP showed that SAFB1 has previously uncharacterised specific RNA binding properties that help coordinate the isoform-specific expression of coding and non-coding genes. These genes regulate splicing, axonal and synaptic function, and are associated with neuropsychiatric disease, suggesting that SAFB1 is an important regulator of key neuronal processes.

    Matched MeSH terms: Nerve Tissue Proteins/metabolism
  6. Muthuraju S, Pati S, Rafiqul M, Abdullah JM, Jaafar H
    J Biosci, 2013 Mar;38(1):93-103.
    PMID: 23385817
    Traumatic brain injury (TBI) causes significant mortality in most developing countries worldwide. At present, it is imperative to identify a treatment to address the devastating post-TBI consequences. Therefore, the present study has been performed to assess the specific effect of immediate exposure to normabaric hyperoxia (NBO) after fluid percussion injury (FPI) in the striatum of mice. To execute FPI, mice were anesthetised and sorted into (i) a TBI group, (ii) a sham group without injury and (iii) a TBI group treated with immediate exposure to NBO for 3 h. Afterwards, brains were harvested for morphological assessment. The results revealed no changes in morphological and neuronal damage in the sham group as compared to the TBI group. Conversely, the TBI group showed severe morphological changes as well as neuronal damage as compared to the TBI group exposed to NBO for 3 h. Interestingly, our findings also suggested that NBO treatment could diminish the neuronal damage in the striatum of mice after FPI. Neuronal damage was evaluated at different points of injury and the neighbouring areas using morphology, neuronal apoptotic cell death and pan-neuronal markers to determine the complete neuronal structure. In conclusion, immediate exposure to NBO following FPI could be a potential therapeutic approach to reduce neuronal damage in the TBI model.
    Matched MeSH terms: Nerve Tissue Proteins/metabolism
  7. Loewen SP, Paterson AR, Loh SY, Rogers MF, Hindmarch CCT, Murphy D, et al.
    Exp Physiol, 2017 11 01;102(11):1373-1379.
    PMID: 28762571 DOI: 10.1113/EP086436
    NEW FINDINGS: What is the topic of this review? We describe roles of crucial signalling molecules in the paraventricular nucleus of the hypothalamus and highlight recent data suggesting sex-specific changes in the expression of crucial signalling molecules and their receptors, which may underlie sex differences in both cardiovascular and metabolic function. What advances does it highlight? This review highlights the integrative capacity of the paraventricular nucleus in mediating cardiovascular and metabolic effects by integrating information from multiple signalling molecules. It also proposes that these signalling molecules have sex-specific differential gene expression, indicating the importance of considering these differences in our ongoing search to understand the female-male differences in the regulation of crucial autonomic systems. Many traditional cardiovascular hormones have been implicated in metabolic function. Conversely, many hormones traditionally involved in metabolic regulation have an effect on cardiovascular function. Many of these signalling molecules exert such effects through specific actions in the paraventricular nucleus, an integrative autonomic control centre located in the hypothalamus. Here, we focus on four cardiovascular/metabolic peptide hormones that signal within the paraventricular nucleus, namely angiotensin II, orexin, adiponectin and nesfatin-1. Each of these hormones has specific electrophysiological effects on paraventricular nucleus neurons that can be related to its physiological actions. In addition, we introduce preliminary transcriptomic data indicating that the genes for some of these hormones and their receptors have sex-specific differential expression.
    Matched MeSH terms: Nerve Tissue Proteins/metabolism*
  8. Kim Y, Griffin JM, Nor MNM, Zhang J, Freestone PS, Danesh-Meyer HV, et al.
    Neurotherapeutics, 2017 Oct;14(4):1148-1165.
    PMID: 28560708 DOI: 10.1007/s13311-017-0536-9
    The cis benzopyran compound tonabersat (SB-220453) has previously been reported to inhibit connexin26 expression in the brain by attenuating the p38-mitogen-activated protein kinase pathway. We show here that tonabersat directly inhibits connexin43 hemichannel opening. Connexin43 hemichannels have been called "pathological pores" based upon their role in secondary lesion spread, edema, inflammation, and neuronal loss following central nervous system injuries, as well as in chronic inflammatory disease. Both connexin43 hemichannels and pannexin channels released adenosine triphosphate (ATP) during ischemia in an in vitro ischemia model, but only connexin43 hemichannels contributed to ATP release during reperfusion. Tonabersat inhibited connexin43 hemichannel-mediated ATP release during both ischemia and reperfusion phases, with direct channel block confirmed using electrophysiology. Tonabersat also reduced connexin43 gap junction coupling in vitro, but only at higher concentrations, with junctional plaques internalized and degraded via the lysosomal pathway. Systemic delivery of tonabersat in a rat bright-light retinal damage model (a model for dry age-related macular degeneration) resulted in significantly improved functional outcomes assessed using electroretinography. Tonabersat also prevented thinning of the retina, especially the outer nuclear layer and choroid, assessed using optical coherence tomography. We conclude that tonabersat, already given orally to over 1000 humans in clinical trials (as a potential treatment for, and prophylactic treatment of, migraine because it was thought to inhibit cortical spreading depression), is a connexin hemichannel inhibitor and may have the potential to be a novel treatment of central nervous system injury and chronic neuroinflammatory disease.
    Matched MeSH terms: Nerve Tissue Proteins/metabolism
  9. Ishak MF, Chua KH, Asma A, Saim L, Aminuddin BS, Ruszymah BH, et al.
    Int J Pediatr Otorhinolaryngol, 2011 Jun;75(6):835-40.
    PMID: 21543123 DOI: 10.1016/j.ijporl.2011.03.021
    This study was aimed to see the difference between chondrocytes from normal cartilage compared to chondrocytes from microtic cartilage. Specific attentions were to characterize the growth of chondrocytes in terms of cell morphology, growth profile and RT-PCR analysis.
    Matched MeSH terms: Nerve Tissue Proteins/metabolism
  10. Gobe GC, Ng KL, Small DM, Vesey DA, Johnson DW, Samaratunga H, et al.
    Biochem Biophys Res Commun, 2016 Apr 22;473(1):47-53.
    PMID: 26995091 DOI: 10.1016/j.bbrc.2016.03.048
    Apoptosis repressor with caspase recruitment domain (ARC), an endogenous inhibitor of apoptosis, is upregulated in a number of human cancers, thereby conferring drug resistance and giving a rationale for the inhibition of ARC to overcome drug resistance. Our hypothesis was that ARC would be similarly upregulated and targetable for therapy in renal cell carcinoma (RCC). Expression of ARC was assessed in 85 human RCC samples and paired non-neoplastic kidney by qPCR and immunohistochemistry, as well as in four RCC cell lines by qPCR, Western immunoblot and confocal microscopy. Contrary to expectations, ARC was significantly decreased in the majority of clear cell RCC and in three (ACHN, Caki-1 and 786-0) of the four RCC cell lines compared with the HK-2 non-cancerous human proximal tubular epithelial cell line. Inhibition of ARC with shRNA in the RCC cell line (SN12K1) that had shown increased ARC expression conferred resistance to Sunitinib, and upregulated interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF). We therefore propose that decreased ARC, particularly in clear cell RCC, confers resistance to targeted therapy through restoration of tyrosine kinase-independent alternate angiogenesis pathways. Although the results are contrary to expectations from other cancer studies, they were confirmed here with multiple analytical methods. We believe the highly heterogeneous nature of cancers like RCC predicate that expression patterns of molecules must be interpreted in relation to respective matched non-neoplastic regions. In the current study, this procedure indicated that ARC is decreased in RCC.
    Matched MeSH terms: Nerve Tissue Proteins/metabolism*
  11. Lee YH, Pang SW, Tan KO
    Biochem Biophys Res Commun, 2016 Apr 22;473(1):224-229.
    PMID: 27003254 DOI: 10.1016/j.bbrc.2016.03.083
    PNMA2, a member of the Paraneoplastic Ma Family (PNMA), was identified through expression cloning by using anti-sera from patients with paraneoplastic disorder. Tissue expression studies showed that PNMA2 was predominantly expressed in normal human brain; however, the protein was shown to exhibit abnormal expression profile as it was found to be expressed in a number of tumour tissues obtained from paraneopalstic patients. The abnormal expression profile of PNMA2 suggests that it might play an important role in tumorigenesis; however, apart from protein expression and immunological studies, the physiological role of PNMA2 remains unclear. In order to determine potential role of PNMA2 in tumorigenesis, and its functional relationship with PNMA family members, MOAP-1 (PNMA4) and PNMA1, expression constructs encoding the respective proteins were generated for both in vitro and in vivo studies. Our investigations showed that over-expressed MOAP-1 and PNMA1 promoted apoptosis and chemo-sensitization in MCF-7 cells as evidenced by condensed nuclei and Annexin-V positive MCF-7 cells; however, the effects mediated by these proteins were significantly inhibited or abolished when co-expressed with PNMA2 in MCF-7 cells. Furthermore, co-immunoprecipitation study showed that PNMA1 and MOAP-1 failed to associate with each other but readily formed respective heterodimer with PNMA2, suggesting that PNMA2 functions as antagonist of MOAP-1 and PNMA1 through heterodimeric interaction.
    Matched MeSH terms: Nerve Tissue Proteins/metabolism*
  12. Garza-Manero S, Sindi AAA, Mohan G, Rehbini O, Jeantet VHM, Bailo M, et al.
    Epigenetics Chromatin, 2019 12 12;12(1):73.
    PMID: 31831052 DOI: 10.1186/s13072-019-0320-7
    BACKGROUND: Members of the HMGN protein family modulate chromatin structure and influence epigenetic modifications. HMGN1 and HMGN2 are highly expressed during early development and in the neural stem/progenitor cells of the developing and adult brain. Here, we investigate whether HMGN proteins contribute to the chromatin plasticity and epigenetic regulation that is essential for maintaining pluripotency in stem cells.

    RESULTS: We show that loss of Hmgn1 or Hmgn2 in pluripotent embryonal carcinoma cells leads to increased levels of spontaneous neuronal differentiation. This is accompanied by the loss of pluripotency markers Nanog and Ssea1, and increased expression of the pro-neural transcription factors Neurog1 and Ascl1. Neural stem cells derived from these Hmgn-knockout lines also show increased spontaneous neuronal differentiation and Neurog1 expression. The loss of HMGN2 leads to a global reduction in H3K9 acetylation, and disrupts the profile of H3K4me3, H3K9ac, H3K27ac and H3K122ac at the Nanog and Oct4 loci. At endodermal/mesodermal genes, Hmgn2-knockout cells show a switch from a bivalent to a repressive chromatin configuration. However, at neuronal lineage genes whose expression is increased, no epigenetic changes are observed and their bivalent states are retained following the loss of HMGN2.

    CONCLUSIONS: We conclude that HMGN1 and HMGN2 maintain the identity of pluripotent embryonal carcinoma cells by optimising the pluripotency transcription factor network and protecting the cells from precocious differentiation. Our evidence suggests that HMGN2 regulates active and bivalent genes by promoting an epigenetic landscape of active histone modifications at promoters and enhancers.

    Matched MeSH terms: Nerve Tissue Proteins/metabolism
  13. Omidbakhsh R, Rajabli B, Nasoohi S, Khallaghi B, Mohamed Z, Naidu M, et al.
    Exp Brain Res, 2014 Nov;232(11):3687-96.
    PMID: 25098558 DOI: 10.1007/s00221-014-4052-4
    Lipopolysaccharide is an endotoxin to induce sickness behavior in several animal models to explore the link between immune activation and cognition. Neuroinflammation playing a pivotal role in disease progress is evidently influenced by sphingosine-1-phosphate. As one of the sphingosine analogs in clinical use for multiple sclerosis, fingolimod (FTY720) was shown to substantially affect gene expression profile in the context of AD in our previous experiments. The present study was designed to evaluate the drug efficacy in the context of the mere inflammatory context leading to memory impairment. FTY720 was repeatedly administered for a few days before or after intracerebral lipopolysaccharide (LPS) injection in rats. Animal's brains were then assigned to histological as well as multiplex mRNA assay following memory performance test. Both FTY720 pre-treatment and post-treatment were similarly capable of ameliorating LPS-induced memory impairment as assessed by passive avoidance test. Such amending effects may be partly accountable by the concomitant alterations in transcriptional levels of mitogen-activated protein kinases as well as inflammatory genes determined by QuantiGene Plex analysis. These findings confirming FTY720 application benefits suggest its efficacy may not differ significantly while considered either as a preventive or as a therapeutic approach against neuroinflammation.
    Matched MeSH terms: Nerve Tissue Proteins/metabolism
  14. Vilhena-Franco T, Mecawi AS, Elias LL, Antunes-Rodrigues J
    J Endocrinol, 2016 Nov;231(2):167-180.
    PMID: 27613338
    Water deprivation (WD) induces changes in plasma volume and osmolality, which in turn activate several responses, including thirst, the activation of the renin-angiotensin system (RAS) and vasopressin (AVP) and oxytocin (OT) secretion. These systems seem to be influenced by oestradiol, as evidenced by the expression of its receptor in brain areas that control fluid balance. Thus, we investigated the effects of oestradiol treatment on behavioural and neuroendocrine changes of ovariectomized rats in response to WD. We observed that in response to WD, oestradiol treatment attenuated water intake, plasma osmolality and haematocrit but did not change urinary volume or osmolality. Moreover, oestradiol potentiated WD-induced AVP secretion, but did not alter the plasma OT or angiotensin II (Ang II) concentrations. Immunohistochemical data showed that oestradiol potentiated vasopressinergic neuronal activation in the lateral magnocellular PVN (PaLM) and supraoptic (SON) nuclei but did not induce further changes in Fos expression in the median preoptic nucleus (MnPO) or subfornical organ (SFO) or in oxytocinergic neuronal activation in the SON and PVN of WD rats. Regarding mRNA expression, oestradiol increased OT mRNA expression in the SON and PVN under basal conditions and after WD, but did not induce additional changes in the mRNA expression for AVP in the SON or PVN. It also did not affect the mRNA expression of RAS components in the PVN. In conclusion, our results show that oestradiol acts mainly on the vasopressinergic system in response to WD, potentiating vasopressinergic neuronal activation and AVP secretion without altering AVP mRNA expression.
    Matched MeSH terms: Nerve Tissue Proteins/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links