Displaying all 4 publications

Abstract:
Sort:
  1. Achike FI, Kwan CY
    Acta Pharmacol Sin, 2002 Aug;23(8):698-704.
    PMID: 12147191
    In an attempt to pharmacologically characterize the Chinese antihypertensive drug, tetrandrine, we observed in rat-tail arteries, an unusual contraction in tissues that were stimulated with high [KCl] and not those stimulated with phenylephrine. The characteristics of this contraction were studied.
    Matched MeSH terms: Muscle, Smooth, Vascular/physiology
  2. Wong CY, Chang YM, Tsai YS, Ng WV, Cheong SK, Chang TY, et al.
    BMC Genomics, 2020 Jul 07;21(1):467.
    PMID: 32635896 DOI: 10.1186/s12864-020-06868-5
    BACKGROUND: Mesangial cells play an important role in the glomerulus to provide mechanical support and maintaine efficient ultrafiltration of renal plasma. Loss of mesangial cells due to pathologic conditions may lead to impaired renal function. Mesenchymal stem cells (MSC) can differentiate into many cell types, including mesangial cells. However transcriptomic profiling during MSC differentiation into mesangial cells had not been studied yet. The aim of this study is to examine the pattern of transcriptomic changes during MSC differentiation into mesangial cells, to understand the involvement of transcription factor (TF) along the differentiation process, and finally to elucidate the relationship among TF-TF and TF-key gene or biomarkers during the differentiation of MSC into mesangial cells.

    RESULTS: Several ascending and descending monotonic key genes were identified by Monotonic Feature Selector. The identified descending monotonic key genes are related to stemness or regulation of cell cycle while ascending monotonic key genes are associated with the functions of mesangial cells. The TFs were arranged in a co-expression network in order of time by Time-Ordered Gene Co-expression Network (TO-GCN) analysis. TO-GCN analysis can classify the differentiation process into three stages: differentiation preparation, differentiation initiation and maturation. Furthermore, it can also explore TF-TF-key genes regulatory relationships in the muscle contraction process.

    CONCLUSIONS: A systematic analysis for transcriptomic profiling of MSC differentiation into mesangial cells has been established. Key genes or biomarkers, TFs and pathways involved in differentiation of MSC-mesangial cells have been identified and the related biological implications have been discussed. Finally, we further elucidated for the first time the three main stages of mesangial cell differentiation, and the regulatory relationships between TF-TF-key genes involved in the muscle contraction process. Through this study, we have increased fundamental understanding of the gene transcripts during the differentiation of MSC into mesangial cells.

    Matched MeSH terms: Muscle, Smooth, Vascular/physiology
  3. Csato V, Kadir SZSA, Khavandi K, Bennett H, Sugden S, Gurney AM, et al.
    Physiol Rep, 2019 Nov;7(22):e14260.
    PMID: 31782255 DOI: 10.14814/phy2.14260
    We investigated the biomechanical relationship between intraluminal pressure within small mesenteric resistance arteries, oxidant activation of PKG, Ca2+ sparks, and BK channel vasoregulation. Mesenteric resistance arteries from wild type (WT) and genetically modified mice with PKG resistance to oxidative activation were studied using wire and pressure myography. Ca2+ sparks and Ca2+ transients within vascular smooth muscle cells of intact arteries were characterized using high-speed confocal microscopy of intact arteries. Arteries were studied under conditions of varying intraluminal pressure and oxidation. Intraluminal pressure specifically, rather than the generic stretch of the artery, was necessary to activate the oxidative pathway. We demonstrated a graded step activation profile for the generation of Ca2+ sparks and also a functional "ceiling" for this pressure --sensitive oxidative pathway. During steady state pressure - induced constriction, any additional Ca2+ sensitive-K+ channel functional availability was independent of oxidant activated PKG. There was an increase in the amplitude, but not the Area under the Curve (AUC) of the caffeine-induced Ca2+ transient in pressurized arteries from mice with oxidant-resistant PKG compared with wild type. Overall, we surmise that intraluminal pressure within resistance arteries controls Ca2+ spark vasoregulation through a tightly controlled pathway with a graded onset switch. The pathway, underpinned by oxidant activation of PKG, cannot be further boosted by additional pressure or oxidation once active. We propose that these restrictive characteristics of pressure-induced Ca2+ spark vasoregulation confer stability for the artery in order to provide a constant flow independent of additional pressure fluctuations or exogenous oxidants.
    Matched MeSH terms: Muscle, Smooth, Vascular/physiology
  4. Ch'ng YS, Loh YC, Tan CS, Ahmad M, Asmawi MZ, Wan Omar WM, et al.
    J Med Food, 2018 Mar;21(3):289-301.
    PMID: 29420109 DOI: 10.1089/jmf.2017.4008
    The seeds of Swietenia macrophylla King (SM) (Meliaceae) are used as a folk medicine for the treatment of hypertension in Malaysia. However, the antihypertensive and vasorelaxant effects of SM seeds are still not widely studied. Thus, this study was designed to investigate the in vivo antihypertensive effects and in vitro mechanism of vasorelaxation of a 50% ethanolic SM seed extract (SM50) and the fingerprint of SM50 was developed through tri-step Fourier transform infrared (FTIR) spectroscopy. The vasorelaxant activity and the underlying mechanisms of SM50 were evaluated on thoracic aortic rings isolated from Sprague-Dawley rats in the presence of antagonists. The pharmacological effect of SM50 was investigated by oral administration of spontaneously hypertensive rats (SHRs) with three different doses of SM50 (1000, 500, and 250 mg/kg/day) for 4 weeks and their systolic blood pressure (SBP) and diastolic blood pressure (DBP) values were measured weekly using tail-cuff method. The tri-step FTIR macro-fingerprint of SM50 showed that SM50 contains stachyose, flavonoids, limonoids, and ester, which may contribute to its vasorelaxant effect. The results showed that the vasorelaxant activity of SM50 was mostly attributed to channel-linked receptors pathways through the blockage of voltage-operated calcium channels (VOCC). SM50 also acts as both potassium channels opener and inositol triphosphate receptor (IP3R) inhibitor, followed by β2-adrenergic pathway, and ultimately mediated through the nitric oxide/soluble guanylyl cyclase/cyclic 3',5'-guanosine monophosphate (NO/sGC/cGMP) signaling pathways. The treatment of SM50 also significantly decreased the SBP and DBP in SHRs. In conclusion, the antihypertensive mechanism of SM50 was mediated by VOCC, K+ channels, IP3R, G-protein-coupled β2-adrenergic receptor, and followed by NO/sGC/cGMP signaling mechanism pathways in descending order. The data suggested that SM50 has the potential to be used as a herbal medicament to treat hypertension.
    Matched MeSH terms: Muscle, Smooth, Vascular/physiology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links