Displaying all 10 publications

Abstract:
Sort:
  1. Yahya NA, Ismail Z, Embong KH, Mohamad SA
    PMID: 8629091
    High performance liquid chromatography (HPLC) with phenylisothiocyanate (PITC) is recently used for confirming the diagnosis of inborn errors of metabolism (IEM) especially amino acid disorders in Malaysian children. The method of HPLC used is a precolumn derivatization of amino acids with phenylisothiocyanate and is separated by reversed phase chromatography using 3.9 x 300 mm free amino acid columns and is detected by a UV/Vis detector. The samples are obtained from cases suspected of inborn errors of metabolism, especially of amino acid disorders, which are detected clinically by pediatricians. Initially, samples from patients suspected of inborn errors of metabolism, either urine or serum, are run on one-dimensional thin layer chromatography and supplementary chemical tests to detect the abnormal bands and associated abnormalities respectively. Positive samples are further run on HPLC to determine the specific amino acids abnormality. An examples of a case of maple syrup urine disease is discussed, based on the thin layer chromatography findings and HPLC findings.
    Matched MeSH terms: Amino Acid Metabolism, Inborn Errors/diagnosis*; Metabolism, Inborn Errors/diagnosis*
  2. Padilla CD, Therrell BL
    J Inherit Metab Dis, 2007 Aug;30(4):490-506.
    PMID: 17643195
    The success of blood spot newborn screening in the USA led to early screening efforts in parts of the Asia Pacific Region in the mid-1960s. While there were early screening leaders in the region, many of the countries with depressed and developing economies are only now beginning organized screening efforts. Four periods of screening growth in the Asia Pacific region were identified. Beginning in the 1960s, blood spot screening began in New Zealand and Australia, followed by Japan and a cord blood screening programme for G6PD deficiency in Singapore. In the 1980s, established programmes added congenital hypothyroidism and new programmes developed in Taiwan, Hong Kong, China (Shanghai), India and Malaysia. Programmes developing in the 1990s built on the experience of others developing more rapidly in Korea, Thailand and the Philippines. In the 2000s, with limited funding support from the International Atomic Energy Agency, there has been screening programme development around detection of congenital hypothyroidism in Indonesia, Mongolia, Sri Lanka, Myanmar and Pakistan. Palau has recently contracted with the Philippine newborn screening programme. There is little information available on newborn screening activities in Nepal, Cambodia, Laos and the other Pacific Island nations, with no organized screening efforts apparent. Since approximately half of the births in the world occur in the Asia Pacific Region, it is important to continue the ongoing implementation and expansion efforts so that these children can attain the same health status as children in more developed parts of the world and their full potential can be realized.
    Matched MeSH terms: Metabolism, Inborn Errors/diagnosis*
  3. Lee WS, Davidson GP, Moore DJ, Butler RN
    J Paediatr Child Health, 2000 Aug;36(4):340-2.
    PMID: 10940167
    OBJECTIVE: To assess the validity and clinical application of a hand-held breath hydrogen (H2) analyzer (BreatH2, Europa Scientific, Crewe, UK).

    METHODOLOGY: Breath samples of patients referred to the Gastroenterology Unit, Women's and Children's Hospital, North Adelaide, South Australia, for confirmation of the diagnosis of carbohydrate malabsorption were analysed with the Quintron microlyzer (Quintron Instrument Co., Milwaukee, USA) and the BreatH2 analyser, using the Quintron microlyzer as the gold standard.

    RESULTS: Twenty-nine breath H2 tests (BHT) were performed in 29 patients aged 2 months to 61 years. The sensitivity and specificity of the BreatH2 analyser in detecting a positive BHT using the Quintron microlyser as the gold standard were 0.90 and 0.95 with positive and negative predictive values of 0.90 and 0.95, respectively. There was one false positive and one false negative reading. Bland-Altman plots showed a high degree of agreement between the values obtained with two different methods.

    CONCLUSIONS: The diagnosis of carbohydrate malabsorption, using a portable breath H2 analyser (BreatH2), achieved an acceptable degree of sensitivity and specificity, enabling it to be used where no alternative is available.

    Matched MeSH terms: Carbohydrate Metabolism, Inborn Errors/diagnosis*
  4. Habib A, Md Yunus Z, Azize NA, Ch'ng GS, Ong WP, Chen BC, et al.
    Eur J Pediatr, 2013 Sep;172(9):1277-81.
    PMID: 23358709 DOI: 10.1007/s00431-013-1947-1
    Lysinuric protein intolerance (LPI; MIM 222700) is an inherited aminoaciduria with an autosomal recessive mode of inheritance. Biochemically, affected patients present with increased excretion of the cationic amino acids: lysine, arginine, and ornithine. We report the first case of LPI diagnosed in Malaysia presented with excessive excretion of homocitrulline. The patient was a 4-year-old male who presented with delayed milestones, recurrent diarrhea, and severe failure to thrive. He developed hyperammonemic coma following a forced protein-rich diet. Plasma amino acid analysis showed increased glutamine, alanine, and citrulline but decreased lysine, arginine and ornithine. Urine amino acids showed a marked excretion of lysine and ornithine together with a large peak of unknown metabolite which was subsequently identified as homocitrulline by tandem mass spectrometry. Molecular analysis confirmed a previously unreported homozygous mutation at exon 1 (235 G > A, p.Gly79Arg) in the SLC7A7 gene. This report demonstrates a novel mutation in the SLC7A7 gene in this rare inborn error of diamino acid metabolism. It also highlights the importance of early and efficient treatment of infections and dehydration in these patients.

    CONCLUSION: The diagnosis of LPI is usually not suspected by clinical findings alone, and specific laboratory investigations and molecular analysis are important to get a definitive diagnosis.

    Matched MeSH terms: Amino Acid Metabolism, Inborn Errors/diagnosis*
  5. Zahid M, Khan AH, Yunus ZM, Chen BC, Steinmann B, Johannes H, et al.
    J Pak Med Assoc, 2019 Mar;69(3):432-436.
    PMID: 30890842
    In spite of the efforts and interventions by the Government of Pakistan and The World Health Organization, the neonatal mortality in Pakistan has declined by only 0.9% as compared to the global average decline of 2.1% between 2000 and 2010. This has resulted in failure to achieve the global Millennium Development Goal 4. Hypoxic-ischaemic encephalopathy, still birth, sepsis, pneumonia, diarrhoea and birth defects are commonly attributed as leading causes of neonatal mortality in Pakistan. Inherited metabolic disorders often present at the time of birth or the first few days of life. The clinical presentation of the inherited metabolic disorders including hypotonia, seizure and lactic acidosis overlap with clinical features of hypoxic-ischaemic encephalopathy and sepsis. Thus, these disorders are often either missed or wrongly diagnosed as hypoxicischaemic encephalopathy or sepsis unless the physicians actively investigate for the underlying inherited metabolic disorders. We present 4 neonates who had received the diagnosis of hypoxic-ischaemic encephalopathy and eventually were diagnosed to have various inherited metabolic disorders. Neonates with sepsis and hypoxic-ischaemic encephalopathy-like clinical presentation should be evaluated for inherited metabolic disorders.
    Matched MeSH terms: Metal Metabolism, Inborn Errors/diagnosis*
  6. Thong MK, Boey CC, Sheng JS, Ushikai M, Kobayashi K
    Singapore Med J, 2010 Jan;51(1):e12-4.
    PMID: 20200759
    We report two Malaysian siblings with neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD). The younger sibling, a six-month-old Chinese girl, presented with prolonged neonatal jaundice, and was investigated for biliary atresia. Urine metabolic screen showed the presence of urinary-reducing sugars, and she was treated with a lactose-free formula. NICCD was suspected based on the clinical history, examination and presence of urinary citrulline. Mutation study of the SLC25A13 gene showed the compound heterozygotes, 851del4 and IVS16ins3kb, which confirmed the diagnosis of NICCD in the patient and her three-year-old female sibling, who also had unexplained neonatal cholestasis. Long-term dietary advice, medical surveillance and genetic counselling were provided to the family. The diagnosis of NICCD should be considered in infants with unexplained prolonged jaundice. DNA-based genetic testing of the SLC25A13 gene may be performed to confirm the diagnosis retrospectively. An awareness of this condition may help in early diagnosis using appropriate metabolic and biochemical investigations, thus avoiding invasive investigations in infants with neonatal cholestasis caused by NICCD.
    Matched MeSH terms: Metabolism, Inborn Errors/diagnosis
  7. Elmonem MA, Belanger-Quintana A, Bordugo A, Boruah R, Cortès-Saladelafont E, Endrakanti M, et al.
    Mol Genet Metab, 2020 11;131(3):285-288.
    PMID: 33004274 DOI: 10.1016/j.ymgme.2020.09.004
    Quantitative estimates for the global impact of COVID-19 on the diagnosis and management of patients with inborn errors of metabolism (IEM) are lacking. We collected relevant data from 16 specialized medical centers treating IEM patients in Europe, Asia and Africa. The median decline of reported IEM related services in March 1st-May 31st 2020 compared to the same period in 2019 were as high as 60-80% with a profound impact on patient management and care for this vulnerable patient group. More representative data along with outcome data and guidelines for managing IEM disorders under such extraordinary circumstances are needed.
    Matched MeSH terms: Metabolism, Inborn Errors/diagnosis*
  8. Balasubramaniam S, Wamelink MM, Ngu LH, Talib A, Salomons GS, Jakobs C, et al.
    J Pediatr Gastroenterol Nutr, 2011 Jan;52(1):113-6.
    PMID: 21119539 DOI: 10.1097/MPG.0b013e3181f50388
    Matched MeSH terms: Metabolism, Inborn Errors/diagnosis
  9. Rajan D, Constance LSL, Brandon P
    Med J Malaysia, 2019 04;74(2):174-175.
    PMID: 31079130
    Methylacetoacetyl-coenzyme A thiolase (MAT) deficiency is an autosomal recessive disease caused by a defect of mitochondrial acetoacetyl-CoA thiolase (T2). There is an error of isoleucine catabolism and ketone body utilization due to mutations in the acetyl-Coenzyme A acetyltransferase 1 (ACAT1) gene. We report a case of a 14 months old Sabahan boy with beta deficiency who presented with severe sepsis and ketoacidosis who subsequently recovered.
    Matched MeSH terms: Amino Acid Metabolism, Inborn Errors/diagnosis*
  10. Chen BC, McGown IN, Thong MK, Pitt J, Yunus ZM, Khoo TB, et al.
    J Inherit Metab Dis, 2010 Dec;33 Suppl 3:S159-62.
    PMID: 20177786 DOI: 10.1007/s10545-010-9056-z
    Most cases of adenylosuccinate lyase (ADSL OMIM 103050) deficiency reported to date are confined to the various European ethnic groups. We report on the first Malaysian case of ADSL deficiency, which appears also to be the first reported Asian case. The case was diagnosed among a cohort of 450 patients with clinical features of psychomotor retardation, global developmental delay, seizures, microcephaly and/or autistic behaviour. The patient presented with frequent convulsions and severe myoclonic jerk within the first few days of life and severe psychomotor retardation. The high performance liquid chromatography (HPLC) profile of the urine revealed the characteristic biochemical markers of succinyladenosine (S-Ado) and succinyl-aminoimidazole carboximide riboside (SAICAr). The urinary S-Ado/SAICAr ratio was found to be 1.02 (type I ADSL deficiency). The patient was compound heterozygous for two novel mutations, c.445C > G (p.R149G) and c.774_778insG (p.A260GfsX24).
    Matched MeSH terms: Purine-Pyrimidine Metabolism, Inborn Errors/diagnosis*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links