Displaying all 8 publications

Abstract:
Sort:
  1. Lawler NG, Gray N, Kimhofer T, Boughton B, Gay M, Yang R, et al.
    J Proteome Res, 2021 May 07;20(5):2796-2811.
    PMID: 33724837 DOI: 10.1021/acs.jproteome.1c00052
    We performed quantitative metabolic phenotyping of blood plasma in parallel with cytokine/chemokine analysis from participants who were either SARS-CoV-2 (+) (n = 10) or SARS-CoV-2 (-) (n = 49). SARS-CoV-2 positivity was associated with a unique metabolic phenotype and demonstrated a complex systemic response to infection, including severe perturbations in amino acid and kynurenine metabolic pathways. Nine metabolites were elevated in plasma and strongly associated with infection (quinolinic acid, glutamic acid, nicotinic acid, aspartic acid, neopterin, kynurenine, phenylalanine, 3-hydroxykynurenine, and taurine; p < 0.05), while four metabolites were lower in infection (tryptophan, histidine, indole-3-acetic acid, and citrulline; p < 0.05). This signature supports a systemic metabolic phenoconversion following infection, indicating possible neurotoxicity and neurological disruption (elevations of 3-hydroxykynurenine and quinolinic acid) and liver dysfunction (reduction in Fischer's ratio and elevation of taurine). Finally, we report correlations between the key metabolite changes observed in the disease with concentrations of proinflammatory cytokines and chemokines showing strong immunometabolic disorder in response to SARS-CoV-2 infection.
    Matched MeSH terms: Kynurenine*
  2. Ang HP, Makpol S, Nasaruddin ML, Ahmad NS, Tan JK, Wan Zaidi WA, et al.
    Int J Mol Sci, 2023 Jul 31;24(15).
    PMID: 37569622 DOI: 10.3390/ijms241512248
    Indoleamine 2,3-dioxygenase (IDO) and the tryptophan-kynurenine pathway (TRP-KP) are upregulated in ageing and could be implicated in the pathogenesis of delirium. This study evaluated the role of IDO/KP in lipopolysaccharide (LPS)-induced delirium in an animal model of chronic cerebral hypoperfusion (CCH), a proposed model for delirium. CCH was induced by a permanent bilateral common carotid artery ligation (BCCAL) in Sprague Dawley rats to trigger chronic neuroinflammation-induced neurodegeneration. Eight weeks after permanent BCCAL, the rats were treated with a single systemic LPS. The rats were divided into three groups: (1) post-BCCAL rats treated with intraperitoneal (i.p.) saline, (2) post-BCCAL rats treated with i.p. LPS 100 μg/kg, and (3) sham-operated rats treated with i.p. LPS 100 μg/kg. Each group consisted of 10 male rats. To elucidate the LPS-induced delirium-like behaviour, natural and learned behaviour changes were assessed by a buried food test (BFT), open field test (OFT), and Y-maze test at 0, 24-, 48-, and 72 h after LPS treatment. Serum was collected after each session of behavioural assessment. The rats were euthanised after the last serum collection, and the hippocampi and cerebral cortex were collected. The TRP-KP neuroactive metabolites were measured in both serum and brain tissues using ELISA. Our data show that LPS treatment in CCH rats was associated with acute, transient, and fluctuated deficits in natural and learned behaviour, consistent with features of delirium. These behaviour deficits were mild compared to the sham-operated rats, which exhibited robust behaviour impairments. Additionally, heightened hippocampal IDO expression in the LPS-treated CCH rats was associated with reduced serum KP activity together with a decrease in the hippocampal quinolinic acid (QA) expression compared to the sham-operated rats, suggested for the presence of endotoxin tolerance through the immunomodulatory activity of IDO in the brain. These data provide new insight into the underlying mechanisms of delirium, and future studies should further explore the role of IDO modulation and its therapeutic potential in delirium.
    Matched MeSH terms: Kynurenine/metabolism
  3. Myint K, Jacobs K, Myint AM, Lam SK, Henden L, Hoe SZ, et al.
    PLoS One, 2021;16(6):e0252668.
    PMID: 34081742 DOI: 10.1371/journal.pone.0252668
    The effects of stress on the neuroendocrine, central nervous and immune systems are extremely complex. The kynurenine pathway (KP) of the tryptophan metabolism is recognised as a cross-link between the neuroendocrine- and immune systems. However, the effects of acute stress from everyday life on KP activation have not yet been studied. This study aims to investigate changes in the levels of the KP neuroactive metabolites and cytokines in response to stress triggered by academic examinations. Ninety-two healthy first year medical students benevolently participated in the study. Parameters were measured pre- examination, which is considered to be a high-stress period, and post-examination, as a low-stress period. Stress induced by academic examinations significantly increases the perceived stress scores (p<0.001), serum cortisol levels (p<0.001) and brain-derived neurotrophic factor (BDNF) levels (p<0.01). It decreased IL-10 levels (p<0.05) but had no effect on IL-6 and TNF-alpha levels. Only the KP neuroactive metabolite, 3-hydroxykynurenine (3-HK) significantly increased (p<0.01) in the post-examination period. In addition, the stress scores positively correlated with the levels of cortisol (r2 = 0.297, p<0.01) at post examination. Acute stress triggered by academic examinations increases cortisol and BDNF production and suppresses the anti-inflammatory cytokine, IL-10, but did not increase significantly the levels of other pro-inflammatory cytokines, tryptophan, kynurenine and downstream KP metabolites. The concomitant increased levels of BDNF under the duress of acute examination stress appear to limit the levels pro-inflammatory markers, which may attenuate the action of cortisol and the neuroinflammatory branch of the KP.
    Matched MeSH terms: Kynurenine/analogs & derivatives; Kynurenine/blood; Kynurenine/metabolism*
  4. Phing AH, Makpol S, Nasaruddin ML, Wan Zaidi WA, Ahmad NS, Embong H
    Int J Mol Sci, 2023 Mar 15;24(6).
    PMID: 36982655 DOI: 10.3390/ijms24065580
    Delirium, a common form of acute brain dysfunction, is associated with increased morbidity and mortality, especially in older patients. The underlying pathophysiology of delirium is not clearly understood, but acute systemic inflammation is known to drive delirium in cases of acute illnesses, such as sepsis, trauma, and surgery. Based on psychomotor presentations, delirium has three main subtypes, such as hypoactive, hyperactive, and mixed subtype. There are similarities in the initial presentation of delirium with depression and dementia, especially in the hypoactive subtype. Hence, patients with hypoactive delirium are frequently misdiagnosed. The altered kynurenine pathway (KP) is a promising molecular pathway implicated in the pathogenesis of delirium. The KP is highly regulated in the immune system and influences neurological functions. The activation of indoleamine 2,3-dioxygenase, and specific KP neuroactive metabolites, such as quinolinic acid and kynurenic acid, could play a role in the event of delirium. Here, we collectively describe the roles of the KP and speculate on its relevance in delirium.
    Matched MeSH terms: Kynurenine/metabolism
  5. Ball HJ, Jusof FF, Bakmiwewa SM, Hunt NH, Yuasa HJ
    Front Immunol, 2014;5:485.
    PMID: 25346733 DOI: 10.3389/fimmu.2014.00485
    Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) are tryptophan-degrading enzymes that have independently evolved to catalyze the first step in tryptophan catabolism via the kynurenine pathway (KP). The depletion of tryptophan and formation of KP metabolites modulates the activity of the mammalian immune, reproductive, and central nervous systems. IDO and TDO enzymes can have overlapping or distinct functions depending on their expression patterns. The expression of TDO and IDO enzymes in mammals differs not only by tissue/cellular localization but also by their induction by distinct stimuli. To add to the complexity, these genes also have undergone duplications in some organisms leading to multiple isoforms of IDO or TDO. For example, many vertebrates, including all mammals, have acquired two IDO genes via gene duplication, although the IDO1-like gene has been lost in some lower vertebrate lineages. Gene duplications can allow the homologs to diverge and acquire different properties to the original gene. There is evidence for IDO enzymes having differing enzymatic characteristics, signaling properties, and biological functions. This review analyzes the evolutionary convergence of IDO and TDO enzymes as tryptophan-catabolizing enzymes and the divergent evolution of IDO homologs to generate an enzyme family with diverse characteristics not possessed by TDO enzymes, with an emphasis on the immune system.
    Matched MeSH terms: Kynurenine
  6. Yan EB, Frugier T, Lim CK, Heng B, Sundaram G, Tan M, et al.
    J Neuroinflammation, 2015 May 30;12:110.
    PMID: 26025142 DOI: 10.1186/s12974-015-0328-2
    During inflammation, the kynurenine pathway (KP) metabolises the essential amino acid tryptophan (TRP) potentially contributing to excitotoxicity via the release of quinolinic acid (QUIN) and 3-hydroxykynurenine (3HK). Despite the importance of excitotoxicity in the development of secondary brain damage, investigations on the KP in TBI are scarce. In this study, we comprehensively characterised changes in KP activation by measuring numerous metabolites in cerebrospinal fluid (CSF) from TBI patients and assessing the expression of key KP enzymes in brain tissue from TBI victims. Acute QUIN levels were further correlated with outcome scores to explore its prognostic value in TBI recovery.

    METHODS: Twenty-eight patients with severe TBI (GCS ≤ 8, three patients had initial GCS = 9-10, but rapidly deteriorated to ≤8) were recruited. CSF was collected from admission to day 5 post-injury. TRP, kynurenine (KYN), kynurenic acid (KYNA), QUIN, anthranilic acid (AA) and 3-hydroxyanthranilic acid (3HAA) were measured in CSF. The Glasgow Outcome Scale Extended (GOSE) score was assessed at 6 months post-TBI. Post-mortem brains were obtained from the Australian Neurotrauma Tissue and Fluid Bank and used in qPCR for quantitating expression of KP enzymes (indoleamine 2,3-dioxygenase-1 (IDO1), kynurenase (KYNase), kynurenine amino transferase-II (KAT-II), kynurenine 3-monooxygenase (KMO), 3-hydroxyanthranilic acid oxygenase (3HAO) and quinolinic acid phosphoribosyl transferase (QPRTase) and IDO1 immunohistochemistry.

    RESULTS: In CSF, KYN, KYNA and QUIN were elevated whereas TRP, AA and 3HAA remained unchanged. The ratios of QUIN:KYN, QUIN:KYNA, KYNA:KYN and 3HAA:AA revealed that QUIN levels were significantly higher than KYN and KYNA, supporting increased neurotoxicity. Amplified IDO1 and KYNase mRNA expression was demonstrated on post-mortem brains, and enhanced IDO1 protein coincided with overt tissue damage. QUIN levels in CSF were significantly higher in patients with unfavourable outcome and inversely correlated with GOSE scores.

    CONCLUSION: TBI induced a striking activation of the KP pathway with sustained increase of QUIN. The exceeding production of QUIN together with increased IDO1 activation and mRNA expression in brain-injured areas suggests that TBI selectively induces a robust stimulation of the neurotoxic branch of the KP pathway. QUIN's detrimental roles are supported by its association to adverse outcome potentially becoming an early prognostic factor post-TBI.

    Matched MeSH terms: Kynurenine/physiology*
  7. Cohen Kadosh K, Muhardi L, Parikh P, Basso M, Jan Mohamed HJ, Prawitasari T, et al.
    Nutrients, 2021 Jan 10;13(1).
    PMID: 33435231 DOI: 10.3390/nu13010199
    Proper nutrition is crucial for normal brain and neurocognitive development. Failure to optimize neurodevelopment early in life can have profound long-term implications for both mental health and quality of life. Although the first 1000 days of life represent the most critical period of neurodevelopment, the central and peripheral nervous systems continue to develop and change throughout life. All this time, development and functioning depend on many factors, including adequate nutrition. In this review, we outline the role of nutrients in cognitive, emotional, and neural development in infants and young children with special attention to the emerging roles of polar lipids and high quality (available) protein. Furthermore, we discuss the dynamic nature of the gut-brain axis and the importance of microbial diversity in relation to a variety of outcomes, including brain maturation/function and behavior are discussed. Finally, the promising therapeutic potential of psychobiotics to modify gut microbial ecology in order to improve mental well-being is presented. Here, we show that the individual contribution of nutrients, their interaction with other micro- and macronutrients and the way in which they are organized in the food matrix are of crucial importance for normal neurocognitive development.
    Matched MeSH terms: Kynurenine
  8. Yap SH, Abdullah NK, McStea M, Takayama K, Chong ML, Crisci E, et al.
    PLoS One, 2017;12(10):e0186000.
    PMID: 29016635 DOI: 10.1371/journal.pone.0186000
    BACKGROUND: Co-infections with human herpesvirus (HHV) have been associated with residual chronic inflammation in antiretroviral (ART)-treated human immunodeficiency virus (HIV)-infected individuals. However, the role of HHV in modulating the tryptophan-kynurenine pathway and clinical outcomes in HIV-infected individuals is poorly understood. Thus, we investigated the seroprevalence of four common HHVs among treated HIV-infected participants and their impact on kynurenine/tryptophan (K/T) ratio and long-term CD4 T-cell recovery in HIV/HHV co-infected participants.

    METHOD: In this cross-sectional study, HIV-infected participants receiving suppressive ART for a minimum of 12 months were recruited from the University Malaya Medical Centre (UMMC), Malaysia. Stored plasma was analyzed for CMV, VZV, HSV-1 and HSV-2 IgG antibody levels, immune activation markers (interleukin-6, interferon-γ, neopterin and sCD14), kynurenine and tryptophan concentrations. The influence of the number of HHV co-infection and K/T ratio on CD4 T-cell recovery was assessed using multivariate Poisson regression.

    RESULTS: A total of 232 HIV-infected participants were recruited and all participants were seropositive for at least one HHV; 96.1% with CMV, 86.6% with VZV, 70.7% with HSV-1 and 53.9% with HSV-2. K/T ratio had a significant positive correlation with CMV (rho = 0.205, p = 0.002), VZV (rho = 0.173, p = 0.009) and a tendency with HSV-2 (rho = 0.120, p = 0.070), with CMV antibody titer demonstrating the strongest modulating effect on K/T ratio among the four HHVs assessed in SOM analysis. In multivariate analysis, higher K/T ratio (p = 0.03) and increasing number of HHV co-infections (p<0.001) were independently associated with poorer CD4 T-cell recovery following 12 months of ART initiation.

    CONCLUSION: Multiple HHV co-infections are common among ART-treated HIV-infected participants in the developing country setting and associated with persistent immune activation and poorer CD4 T-cell recovery.

    Matched MeSH terms: Kynurenine/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links