METHODS AND RESULTS: The Efficacy of a Standardized Diuretic Protocol in Acute Heart Failure (ENACT-HF) study is an international, multicentre, non-randomized, open-label, pragmatic study in AHF patients on chronic loop diuretic therapy, admitted to the hospital for intravenous loop diuretic therapy, aiming to enrol 500 patients. Inclusion criteria are as follows: at least one sign of volume overload (oedema, ascites, or pleural effusion), use ≥ 40 mg of furosemide or equivalent for >1 month, and a BNP > 250 ng/L or an N-terminal pro-B-type natriuretic peptide > 1000 pg/L. The study is designed in two sequential phases. During Phase 1, all centres will treat consecutive patients according to the local standard of care. In the Phase 2 of the study, all centres will implement a standardized diuretic protocol in the next cohort of consecutive patients. The protocol is based upon the recently published HFA algorithm on diuretic use and starts with intravenous administration of two times the oral home dose. It includes early assessment of diuretic response with a spot urinary sodium measurement after 2 h and urine output after 6 h. Diuretics will be tailored further based upon these measurements. The study is powered for its primary endpoint of natriuresis after 1 day and will be able to detect a 15% difference with 80% power. Secondary endpoints are natriuresis and diuresis after 2 days, change in congestion score, change in weight, in-hospital mortality, and length of hospitalization.
CONCLUSIONS: The ENACT-HF study will investigate whether a step-wise diuretic approach, based upon early assessment of urinary sodium and urine output as proposed by the HFA, is feasible and able to improve decongestion in AHF with volume overload.
OBJECTIVE: To determine whether prolonged β-lactam antibiotic infusions are associated with a reduced risk of death in critically ill adults with sepsis or septic shock compared with intermittent infusions.
DATA SOURCES: The primary search was conducted with MEDLINE (via PubMed), CINAHL, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), and ClinicalTrials.gov from inception to May 2, 2024.
STUDY SELECTION: Randomized clinical trials comparing prolonged (continuous or extended) and intermittent infusions of β-lactam antibiotics in critically ill adults with sepsis or septic shock.
DATA EXTRACTION AND SYNTHESIS: Data extraction and risk of bias were assessed independently by 2 reviewers. Certainty of evidence was evaluated with the Grading of Recommendations Assessment, Development and Evaluation approach. A bayesian framework was used as the primary analysis approach and a frequentist framework as the secondary approach.
MAIN OUTCOMES AND MEASURES: The primary outcome was all-cause 90-day mortality. Secondary outcomes included intensive care unit (ICU) mortality and clinical cure.
RESULTS: From 18 eligible randomized clinical trials that included 9108 critically ill adults with sepsis or septic shock (median age, 54 years; IQR, 48-57; 5961 men [65%]), 17 trials (9014 participants) contributed data to the primary outcome. The pooled estimated risk ratio for all-cause 90-day mortality for prolonged infusions of β-lactam antibiotics compared with intermittent infusions was 0.86 (95% credible interval, 0.72-0.98; I2 = 21.5%; high certainty), with a 99.1% posterior probability that prolonged infusions were associated with lower 90-day mortality. Prolonged infusion of β-lactam antibiotics was associated with a reduced risk of intensive care unit mortality (risk ratio, 0.84; 95% credible interval, 0.70-0.97; high certainty) and an increase in clinical cure (risk ratio, 1.16; 95% credible interval, 1.07-1.31; moderate certainty).
CONCLUSIONS AND RELEVANCE: Among adults in the intensive care unit who had sepsis or septic shock, the use of prolonged β-lactam antibiotic infusions was associated with a reduced risk of 90-day mortality compared with intermittent infusions. The current evidence presents a high degree of certainty for clinicians to consider prolonged infusions as a standard of care in the management of sepsis and septic shock.
TRIAL REGISTRATION: PROSPERO Identifier: CRD42023399434.
Methods: Four ampoules of intravenous co-trimoxazole were injected into an infusion bag containing either 480 (1:25 v/v), 380 (1:20 v/v), 280 (1:15 v/v) or 180 (1:10 v/v) mL of glucose 5% solution. Three bags for each dilution (total 12 bags) were prepared and stored at room temperature. An aliquot was withdrawn immediately (at 0 hour) and after 0.5, 1, 2 and 4 hours of storage for high-performance liquid-chromatography (HPLC) analysis, and additional samples were withdrawn every half an hour for microscopic examination. Each sample was analysed for the concentration of trimethoprim and sulfamethoxazole using a stability indicating HPLC method. Samples were assessed for pH, change in colour (visually) and for particle content (microscopically) immediately after preparation and on each time of analysis.
Results: Intravenous co-trimoxazole at 1:25, 1:20, 1:15 and 1:10 v/v retained more than 98% of the initial concentration of trimethoprim and sulfamethoxazole for 4 hours. There was no major change in pH at time zero and at various time points. Microscopically, no particles were detected for at least 4 hours and 2 hours when intravenous co-trimoxazole was diluted at 1:25 or 1:20 and 1:15 v/v, respectively. More than 1200 particles/mL were detected after 2.5 hours of storage when intravenous co-trimoxazole was diluted at 1:15 v/v.
Conclusions: Intravenous co-trimoxazole is stable over a period of 4 hours when diluted with 380 mL of glucose 5% solution (1:20 v/v) and for 2 hours when diluted with 280 mL glucose 5% solution (1:15 v/v).
OBJECTIVES: To assess the effects of intravenous continuous infusion versus bolus injection of loop diuretics for the initial treatment of acute heart failure in adults.
SEARCH METHODS: We identified trials through systematic searches of bibliographic databases and in clinical trials registers including CENTRAL, MEDLINE, Embase, CPCI-S on the Web of Science, ClinicalTrials.gov, the World Health Organization (WHO) International Clinical Trials Registry platform (ICTRP), and the European Union Trials register. We conducted reference checking and citation searching, and contacted study authors to identify additional studies. The latest search was performed on 29 February 2024.
SELECTION CRITERIA: We included randomised controlled trials (RCTs) involving adults with AHF, NYHA classification III or IV, regardless of aetiology or ejection fraction, where trials compared intravenous continuous infusion of loop diuretics with intermittent bolus injection in AHF. We excluded trials with chronic stable heart failure, cardiogenic shock, renal artery stenosis, or end-stage renal disease. Additionally, we excluded studies combining loop diuretics with hypertonic saline, inotropes, vasoactive medications, or renal replacement therapy and trials where diuretic dosing was protocol-driven to achieve a target urine output, due to confounding factors.
DATA COLLECTION AND ANALYSIS: Two review authors independently screened papers for inclusion and reviewed full-texts. Outcomes included weight loss, all-cause mortality, length of hospital stay, readmission following discharge, and occurrence of acute kidney injury. We performed risk of bias assessment and meta-analysis where data permitted and assessed certainty of the evidence.
MAIN RESULTS: The review included seven RCTs, spanning 32 hospitals in seven countries in North America, Europe, and Asia. Data collection ranged from eight months to six years. Following exclusion of participants in subgroups with confounding treatments and different clinical settings, 681 participants were eligible for review. These additional study characteristics, coupled with our strict inclusion and exclusion criteria, improve the applicability of the body of the evidence as they reflect real-world clinical practice. Meta-analysis was feasible for net weight loss, all-cause mortality, length of hospital stay, readmission, and acute kidney injury. Literature review and narrative analysis explored daily fluid balance; cardiovascular mortality; B-type natriuretic peptide (BNP) change; N-terminal-proBNP change; and adverse incidents such as ototoxicity, hypotension, and electrolyte imbalances. Risk of bias assessment revealed two studies with low overall risk, four with some concerns, and one with high risk. All sensitivity analyses excluded trials at high risk of bias. Only narrative analysis was conducted for 'daily fluid balance' due to diverse data presentation methods across two studies (169 participants, the evidence was very uncertain about the effect). Results of narrative analysis varied. For instance, one study reported higher daily fluid balance within the first 24 hours in the continuous infusion group compared to the bolus injection group, whereas there was no difference in fluid balance beyond this time point. Continuous intravenous infusion of loop diuretics may result in mean net weight loss of 0.86 kg more than bolus injection of loop diuretics, but the evidence is very uncertain (mean difference (MD) 0.86 kg, 95% confidence interval (CI) 0.44 to 1.28; 5 trials, 497 participants; P < 0.001, I2 = 21%; very low-certainty evidence). Importantly, sensitivity analysis excluding trials with high risk of bias showed there was insufficient evidence for a difference in bodyweight loss between groups (MD 0.70 kg, 95% CI -0.06 to 1.46; 3 trials, 378 participants; P = 0.07, I2 = 0%). There may be little to no difference in all-cause mortality between continuous infusion and bolus injection (risk ratio (RR) 1.53, 95% CI 0.81 to 2.90; 5 trials, 530 participants; P = 0.19, I2 = 4%; low-certainty evidence). Despite sensitivity analysis, the direction of the evidence remained unchanged. No trials measured cardiovascular mortality. There may be little to no difference in the length of hospital stay between continuous infusion and bolus injection of loop diuretics, but the evidence is very uncertain (MD -1.10 days, 95% CI -4.84 to 2.64; 4 trials, 211 participants; P = 0.57, I2 = 88%; very low-certainty evidence). Sensitivity analysis improved heterogeneity; however, the direction of the evidence remained unchanged. There may be little to no difference in the readmission to hospital between continuous infusion and bolus injection of loop diuretics (RR 0.85, 95% CI 0.63 to 1.16; 3 trials, 400 participants; P = 0.31, I2 = 0%; low-certainty evidence). Sensitivity analysis continued to show insufficient evidence for a difference in the readmission to hospital between groups. There may be little to no difference in the occurrence of acute kidney injury as an adverse event between continuous infusion and bolus injection of intravenous loop diuretics (RR 1.02, 95% CI 0.70 to 1.49; 3 trials, 491 participants; P = 0.92, I2 = 0%; low-certainty evidence). Sensitivity analysis continued to show that continuous infusion may make little to no difference on the occurrence of acute kidney injury as an adverse events compared to the bolus injection of intravenous loop diuretics.
AUTHORS' CONCLUSIONS: Analysis of available data comparing two delivery methods of diuretics in acute heart failure found that the current data are insufficient to show superiority of one strategy intervention over the other. Our findings were based on trials meeting stringent inclusion and exclusion criteria to ensure validity. Despite previous reviews suggesting advantages of continuous infusion over bolus injections, our review found insufficient evidence to support or refute this. However, our review, which excluded trials with clinical confounders and RCTs with high risk of bias, offers the most robust conclusion to date.
OBJECTIVE: To evaluate whether continuous vs intermittent infusion of a β-lactam antibiotic (piperacillin-tazobactam or meropenem) results in decreased all-cause mortality at 90 days in critically ill patients with sepsis.
DESIGN, SETTING, AND PARTICIPANTS: An international, open-label, randomized clinical trial conducted in 104 intensive care units (ICUs) in Australia, Belgium, France, Malaysia, New Zealand, Sweden, and the United Kingdom. Recruitment occurred from March 26, 2018, to January 11, 2023, with follow-up completed on April 12, 2023. Participants were critically ill adults (≥18 years) treated with piperacillin-tazobactam or meropenem for sepsis.
INTERVENTION: Eligible patients were randomized to receive an equivalent 24-hour dose of a β-lactam antibiotic by either continuous (n = 3498) or intermittent (n = 3533) infusion for a clinician-determined duration of treatment or until ICU discharge, whichever occurred first.
MAIN OUTCOMES AND MEASURES: The primary outcome was all-cause mortality within 90 days after randomization. Secondary outcomes were clinical cure up to 14 days after randomization; new acquisition, colonization, or infection with a multiresistant organism or Clostridioides difficile infection up to 14 days after randomization; ICU mortality; and in-hospital mortality.
RESULTS: Among 7202 randomized participants, 7031 (mean [SD] age, 59 [16] years; 2423 women [35%]) met consent requirements for inclusion in the primary analysis (97.6%). Within 90 days, 864 of 3474 patients (24.9%) assigned to receive continuous infusion had died compared with 939 of 3507 (26.8%) assigned intermittent infusion (absolute difference, -1.9% [95% CI, -4.9% to 1.1%]; odds ratio, 0.91 [95% CI, 0.81 to 1.01]; P = .08). Clinical cure was higher in the continuous vs intermittent infusion group (1930/3467 [55.7%] and 1744/3491 [50.0%], respectively; absolute difference, 5.7% [95% CI, 2.4% to 9.1%]). Other secondary outcomes were not statistically different.
CONCLUSIONS AND RELEVANCE: The observed difference in 90-day mortality between continuous vs intermittent infusions of β-lactam antibiotics did not meet statistical significance in the primary analysis. However, the confidence interval around the effect estimate includes the possibility of both no important effect and a clinically important benefit in the use of continuous infusions in this group of patients.
TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03213990.
METHODS: This study is a single-center, single-blinded, prospective randomized clinical study. One hundred twenty patients were randomized into two groups (remifentanil vs dexmedetomidine). Demographic characteristics and clinical outcomes, including level of sedation, vital signs, and patient satisfaction were monitored and recorded.
RESULTS: Group R showed a higher mean observer's assessment of alertness/sedation score (3.9 ± 0.7 vs 3.6 ± 0.8; p = 0.008), mean arterial pressure (92.0 ± 12.0 vs 83.0 ± 13.0 mmHg; p
METHODS: This was a two-centre randomised controlled trial of CI versus IB dosing of beta-lactam antibiotics, which enrolled critically ill participants with severe sepsis who were not on renal replacement therapy (RRT). The primary outcome was clinical cure at 14 days after antibiotic cessation. Secondary outcomes were PK/PD target attainment, ICU-free days and ventilator-free days at day 28 post-randomisation, 14- and 30-day survival, and time to white cell count normalisation.
RESULTS: A total of 140 participants were enrolled with 70 participants each allocated to CI and IB dosing. CI participants had higher clinical cure rates (56 versus 34 %, p = 0.011) and higher median ventilator-free days (22 versus 14 days, p MIC than the IB arm on day 1 (97 versus 70 %, p
OBJECTIVES: In this individual patient data meta-analysis of critically ill patients with severe sepsis, we aimed to compare clinical outcomes of those treated with continuous versus intermittent infusion of β-lactam antibiotics.
METHODS: We identified relevant randomized controlled trials comparing continuous versus intermittent infusion of β-lactam antibiotics in critically ill patients with severe sepsis. We assessed the quality of the studies according to four criteria. We combined individual patient data from studies and assessed data integrity for common baseline demographics and study endpoints, including hospital mortality censored at 30 days and clinical cure. We then determined the pooled estimates of effect and investigated factors associated with hospital mortality in multivariable analysis.
MEASUREMENTS AND MAIN RESULTS: We identified three randomized controlled trials in which researchers recruited a total of 632 patients with severe sepsis. The two groups were well balanced in terms of age, sex, and illness severity. The rates of hospital mortality and clinical cure for the continuous versus intermittent infusion groups were 19.6% versus 26.3% (relative risk, 0.74; 95% confidence interval, 0.56-1.00; P = 0.045) and 55.4% versus 46.3% (relative risk, 1.20; 95% confidence interval, 1.03-1.40; P = 0.021), respectively. In a multivariable model, intermittent β-lactam administration, higher Acute Physiology and Chronic Health Evaluation II score, use of renal replacement therapy, and infection by nonfermenting gram-negative bacilli were significantly associated with hospital mortality. Continuous β-lactam administration was not independently associated with clinical cure.
CONCLUSIONS: Compared with intermittent dosing, administration of β-lactam antibiotics by continuous infusion in critically ill patients with severe sepsis is associated with decreased hospital mortality.
MATERIALS AND METHODS: Retrospective data were obtained for 36 patients with CKD stage 4 and 5 after parathyroid surgery, correlating albumin-corrected serum calcium with the infusion rate of calcium gluconate. Calcium flux was characterised along with excursions out of the target calcium range of 2 to 3 mmol/L. With this data, an improved titration regimen was constructed.
RESULTS: Mean peak efflux rate (PER) from the extracellular calcium pool was 2.97 mmol/h occurring 26.6 hours postoperatively. Peak calcium efflux tended to occur later in cases of severe POH. Eighty-one per cent of patients had excursions outside of the target calcium range of 2 to 3 mmol/L. Mean time of onset for hypocalcaemia was 2 days postoperatively. Hypocalcaemia was transient in 25% and persistent in 11% of patients.
CONCLUSION: A simple titration regimen was constructed in which a 10% calcium gluconate infusion was started at 4.5 mL/h when serum calcium was <2 mmol/L, then increased to 6.5 mL/h and finally to 9.0 mL/h if calcium continued falling. Preoperative oral calcium and calcitriol doses were maintained. Blood testing was done 6-hourly, but when a higher infusion rate was needed, 4-hourly blood testing was preferred. Monitoring was discontinued if no hypocalcaemia developed in the fi rst 4 days after surgery. If hypocalcaemia persisted 6 days after surgery, then the infusion was stopped with further monitoring for 24 hours.