Displaying all 9 publications

Abstract:
Sort:
  1. Verma DK, Gupta D, Lal SK
    Viruses, 2018 11 18;10(11).
    PMID: 30453689 DOI: 10.3390/v10110650
    Influenza still remains one of the most challenging diseases, posing a significant threat to public health. Host lipid rafts play a critical role in influenza A virus (IAV) assembly and budding, however, their role in polyvalent IAV host binding and endocytosis had remained elusive until now. In the present study, we observed co-localization of IAV with a lipid raft marker ganglioside, GM1, on the host surface. Further, we isolated the lipid raft micro-domains from IAV infected cells and detected IAV protein in the raft fraction. Finally, raft disruption using Methyl-β-Cyclodextrin revealed significant reduction in IAV host binding, suggesting utilization of host rafts for polyvalent binding on the host cell surface. In addition to this, cyclodextrin mediated inhibition of raft-dependent endocytosis showed significantly reduced IAV internalization. Interestingly, exposure of cells to cyclodextrin two hours post-IAV binding showed no such reduction in IAV entry, indicating use of raft-dependent endocytosis for host entry. In summary, this study demonstrates that host lipid rafts are selected by IAV as a host attachment factors for multivalent binding, and IAV utilizes these micro-domains to exploit raft-dependent endocytosis for host internalization, a virus entry route previously unknown for IAV.
    Matched MeSH terms: Influenza A virus/physiology*
  2. Lal SK
    Viruses, 2020 08 09;12(8).
    PMID: 32784813 DOI: 10.3390/v12080870
    We are in the midst of a pandemic where the infective agent has been identified, but how it causes mild disease in some and fatally severe disease in other infected individuals remains a mystery [...].
    Matched MeSH terms: Influenza A virus/physiology*
  3. Hossan MS, Fatima A, Rahmatullah M, Khoo TJ, Nissapatorn V, Galochkina AV, et al.
    Arch Virol, 2018 Aug;163(8):2121-2131.
    PMID: 29633078 DOI: 10.1007/s00705-018-3842-6
    Viral respiratory infections are raising serious concern globally. Asian medicinal plants could be useful in improving the current treatment strategies for influenza. The present study examines the activity of five plants from Bangladesh against influenza virus. MDCK cells infected with influenza virus A/Puerto Rico/8/34 (H1N1) were treated with increasing concentrations of ethyl acetate extracts, and their cytotoxicity (CC50), virus-inhibiting activity (IC50), and selectivity index (SI) were calculated. The ethyl acetate extract of fruits of Embelia ribes Burm. f. (Myrsinaceae) had the highest antiviral activity, with an IC50 of 0.2 µg/mL and a SI of 32. Its major constituent, embelin, was further isolated and tested against the same virus. Embelin demonstrated antiviral activity, with an IC50 of 0.3 µM and an SI of 10. Time-of-addition experiments revealed that embelin was most effective when added at early stages of the viral life cycle (0-1 h postinfection). Embelin was further evaluated against a panel of influenza viruses including influenza A and B viruses that were susceptible or resistant to rimantadine and oseltamivir. Among the viruses tested, avian influenza virus A/mallard/Pennsylvania/10218/84 (H5N2) was the most susceptible to embelin (SI = 31), while A/Aichi/2/68 (H3N2) virus was the most resistant (SI = 5). In silico molecular docking showed that the binding site for embelin is located in the receptor-binding domain of the viral hemagglutinin. The results of this study provide evidence that E. ribes can be used for development of a novel alternative anti-influenza plant-based agent.
    Matched MeSH terms: Influenza A virus/physiology
  4. Xu X, Smith CB, Mungall BA, Lindstrom SE, Hall HE, Subbarao K, et al.
    J Infect Dis, 2002 Nov 15;186(10):1490-3.
    PMID: 12404167
    Reassortant influenza A viruses bearing the H1 subtype of hemagglutinin (HA) and the N2 subtype of neuraminidase (NA) were isolated from humans in the United States, Canada, Singapore, Malaysia, India, Oman, Egypt, and several countries in Europe during the 2001-2002 influenza season. The HAs of these H1N2 viruses were similar to that of the A/New Caledonia/20/99(H1N1) vaccine strain both antigenically and genetically, and the NAs were antigenically and genetically related to those of recent human H3N2 reference strains, such as A/Moscow/10/99(H3N2). All 6 internal genes of the H1N2 reassortants examined originated from an H3N2 virus. This article documents the first widespread circulation of H1N2 reassortants on 4 continents. The current influenza vaccine is expected to provide good protection against H1N2 viruses, because it contains the A/New Caledonia/20/99(H1N1) and A/Moscow/10/99(H3N2)-like viruses, which have H1 and N2 antigens that are similar to those of recent H1N2 viruses.
    Matched MeSH terms: Influenza A virus/physiology*
  5. Tan MC, Wong WY, Ng WL, Yeo KS, Mohidin TB, Lim YY, et al.
    PLoS One, 2017;12(1):e0170352.
    PMID: 28114392 DOI: 10.1371/journal.pone.0170352
    Influenza virus is estimated to cause 3-5 million severe complications and about 250-500 thousand deaths per year. Different kinds of anti-influenza virus drugs have been developed. However, the emergence of drug resistant strains has presented a big challenge for efficient antiviral therapy. Indole derivatives have been shown to exhibit both antiviral and anti-inflammatory activities. In this study, we adopted a cell-based system to screen for potential anti-IAV agents. Four indole derivatives (named 525A, 526A, 527A and 528A) were subjected to the antiviral screening, of which 526A was selected for further investigation. We reported that pre-treating cells with 526A protects cells from IAV infection. Furthermore, 526A inhibits IAV replication by inhibiting the expression of IAV genes. Interestingly, 526A suppresses the activation of IRF3 and STAT1 in host cells and thus represses the production of type I interferon response and cytokines in IAV-infected cells. Importantly, 526A also partially blocks the activation of RIG-I pathway. Taken together, these results suggest that 526A may be a potential anti-influenza A virus agent.
    Matched MeSH terms: Influenza A virus/physiology
  6. Kumar P, Gaur P, Kumari R, Lal SK
    J Cell Biochem, 2019 04;120(4):6449-6458.
    PMID: 30335904 DOI: 10.1002/jcb.27935
    Neuraminidase protein (NA) of influenza A virus (IAV) is popularly known for its sialidase function to assist in the release of progeny virus. However, involvement of NA in other stages of the IAV life cycle also indicates its multifunctional nature and necessity to interact with other host proteins. Here, we report a host protein-heat shock protein 90 (Hsp90), as a novel interacting partner of IAV NA. A classical yeast two-hybrid screen was conducted to identify a new host interacting partner for NA and the interaction was further validated by coimmunoprecipitation from cells, transiently expressing both proteins and also from IAV-infected cells. Confocal imaging showed that both proteins colocalized in the cytoplasm in transfected host cells. Interestingly, increased levels of NA in the presence of Hsp90 was observed, which tends to decrease if adenosine triphosphatase activity of Hsp90 is inhibited using 17-N-allylamino-17-demethoxygeldanamycin (17AAG). This establishes viral NA as a client protein of host chaperone Hsp90 contributing toward NA's stability via the NA-Hsp90 interaction. This is the first report showing the interaction of NA with Hsp90 and its role in stabilizing viral NA thus preventing it from degradation. Enhanced cell survival in the presence of this interaction was also observed, thus suggesting the requirement of stable viral NA, post-IAV infection, for efficient virus production in infected mammalian cells.
    Matched MeSH terms: Influenza A virus/physiology*
  7. Sharma S, Chatterjee A, Kumar P, Lal S, Kondabagil K
    Viruses, 2020 04 15;12(4).
    PMID: 32326380 DOI: 10.3390/v12040444
    Micro RNAs (miRNAs) are a class of small non-coding single-stranded RNA, which play an important role in modulating host-Influenza A virus (IAV) crosstalk. The interplay between influenza and miRNA interaction is defined by a plethora of complex mechanisms, which are not fully understood yet. Here, we demonstrate that in IAV infected A549 cells, a synchronous increase was observed in the expression of mTOR up to 24 hpi and significant downregulation at 48 hpi. Additionally, NP of IAV interacts with mTOR and modulates the levels of mTOR mRNA and protein, thus regulating the translation of host cell. RNA sequencing and qPCR analysis of IAV-infected A549 cells and NP transfected cells revealed that miR-101 downregulates mTOR transcripts at later stages of infection. Ectopic expression of miR-101 mimic led to a decrease in expression of NP, a reduction in IAV titer and replication. Moreover, treatment of the cells with Everolimus, a potent inhibitor of mTOR, resulted in an increase of miR-101 transcript levels, which further suppressed the viral protein synthesis. Collectively, the data suggest a novel mechanism that IAV stimulates mTOR pathway at early stages of infection; however, at a later time-point, positive regulation of miR-101 restrains the mTOR expression, and hence, the viral propagation.
    Matched MeSH terms: Influenza A virus/physiology*
  8. Haghani A, Mehrbod P, Safi N, Kadir FA, Omar AR, Ideris A
    BMC Complement Altern Med, 2017 Jan 05;17(1):22.
    PMID: 28056926 DOI: 10.1186/s12906-016-1498-x
    BACKGROUND: Edible Bird's Nest (EBN) as a popular traditional Chinese medicine is believed to have health enhancing and antiviral activities against influenza A virus (IAV); however, the molecular mechanism behind therapeutic effects of EBN is not well characterized.

    METHODS: In this study, EBNs that underwent different enzymatic preparation were tested against IAV infected cells. 50% cytotoxic concentration (CC50) and 50% inhibitory concentration (IC50) of the EBNs against IAV strain A/Puerto Rico/8/1934(H1N1) were determined by HA and MTT assays. Subsequently, the sialic acid content of the used EBNs were analyzed by fluorometric HPLC. Western Blotting and immunofluorescent staining were used to investigate the effects of EBNs on early endosomal trafficking and autophagy process of influenza virus.

    RESULTS: This study showed that post inoculations of EBNs after enzymatic preparations have the highest efficacy to inhibit IAV. While CC50 of the tested EBNs ranged from 27.5-32 mg/ml, the IC50 of these compounds ranged between 2.5-4.9 mg/ml. EBNs could inhibit IAV as efficient as commercial antiviral agents, such as amantadine and oseltamivir with different mechanisms of action against IAV. The antiviral activity of these EBNs correlated with the content of N-acetyl neuraminic acid. EBNs could affect early endosomal trafficking of the virus by reducing Rab5 and RhoA GTPase proteins and also reoriented actin cytoskeleton of IAV infected cells. In addition, for the first time this study showed that EBNs can inhibit intracellular autophagy process of IAV life cycle as evidenced by reduction of LC3-II and increasing of lysosomal degradation.

    CONCLUSIONS: The results procured in this study support the potential of EBNs as supplementary medication or alternative to antiviral agents to inhibit influenza infections. Evidently, EBNs can be a promising antiviral agent; however, these natural compounds should be screened for their metabolites prior to usage as therapeutic approach.

    Matched MeSH terms: Influenza A virus/physiology
  9. Rahman SK, Ansari MA, Gaur P, Ahmad I, Chakravarty C, Verma DK, et al.
    Viruses, 2021 04 21;13(5).
    PMID: 33919410 DOI: 10.3390/v13050726
    To establish a productive infection in host cells, viruses often use one or multiple host membrane glycoproteins as their receptors. For Influenza A virus (IAV) such a glycoprotein receptor has not been described, to date. Here we show that IAV is using the host membrane glycoprotein CD66c as a receptor for entry into human epithelial lung cells. Neuraminidase (NA), a viral spike protein, binds to CD66c on the cell surface during IAV entry into the host cells. Lung cells overexpressing CD66c showed an increase in virus binding and subsequent entry into the cell. Upon comparison, CD66c demonstrated higher binding capacity than other membrane glycoproteins (EGFR and DC-SIGN) reported earlier to facilitate IAV entry into host cells. siRNA mediated knockdown of CD66c from lung cells inhibited virus binding on cell surface and entry into cells. Blocking CD66c by antibody on the cell surface resulted in decreased virus entry. We found that CD66c is a specific glycoprotein receptor for influenza A virus that did not affect entry of non-IAV RNA virus (Hepatitis C virus). Finally, IAV pre-incubated with recombinant CD66c protein when administered intranasally in mice showed decreased cytopathic effects in mice lungs. This publication is the first to report CD66c (Carcinoembryonic cell adhesion molecule 6 or CEACAM6) as a glycoprotein receptor for Influenza A virus.
    Matched MeSH terms: Influenza A virus/physiology*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links