Displaying all 3 publications

Abstract:
Sort:
  1. Kalshetti MG, Argade NP
    Alkaloids Chem Biol, 2020;83:187-223.
    PMID: 32098650 DOI: 10.1016/bs.alkal.2019.12.001
    The tryptamine-derived polycyclic bridged bioactive indole alkaloids subincanadines A-G were isolated in 2002 by Ohsaki and coworkers from the bark of the Brazilian medicinal plant Aspidosperma subincanum. Kobayashi proposed that subincanadines D-F could be biosynthetically resulting from stemmadenine via two different pathways and, furthermore, that the subincanadines A-C could be biogenetically resulting from subincanadines D and E. Kam and coworkers, in their focused efforts, isolated five indole alkaloids from Malaysian Kopsia arborea species, namely valparicine, apparicine, arboridinine, arborisidine, and arbornamine in combination with subincanadine E. On the basis of structural features, it has been proposed and proved in some examples that subincanadine E is a biogenetic precursor of these five different bioactive indole alkaloids bearing complex structural architectures. All important information on isolation, characterization, bioactivity, probable biogenetic pathways, and more specifically racemic and enantioselective total synthesis of subincanadine alkaloids and their biogenetic congeners are summarized in the present chapter. Special importance is given to the total synthesis and the synthetic strategies intended therein, comprising a set of main reactions.
    Matched MeSH terms: Indole Alkaloids/metabolism
  2. Low YY, Hong FJ, Lim KH, Thomas NF, Kam TS
    J Nat Prod, 2014 Feb 28;77(2):327-38.
    PMID: 24428198 DOI: 10.1021/np400922x
    Several transformations of the seco Aspidosperma alkaloid leuconolam were carried out. The based-induced reaction resulted in cyclization to yield two epimers, the major product corresponding to the optical antipode of a (+)-meloscine derivative. The structures and relative configuration of the products were confirmed by X-ray diffraction analysis. Reaction of leuconolam and epi-leuconolam with various acids, molecular bromine, and hydrogen gave results that indicated that the structure of the alkaloid, previously assigned as epi-leuconolam, was incorrect. This was confirmed by an X-ray diffraction analysis, which revealed that epi-leuconolam is in fact 6,7-dehydroleuconoxine. Short partial syntheses of the diazaspiro indole alkaloid leuconoxine and the new leuconoxine-type alkaloids leuconodines A and F were carried out.
    Matched MeSH terms: Indole Alkaloids/metabolism
  3. Chong KW, Yeap JS, Lim SH, Weber JF, Low YY, Kam TS
    J Nat Prod, 2017 11 22;80(11):3014-3024.
    PMID: 29087707 DOI: 10.1021/acs.jnatprod.7b00621
    Reexamination of the absolute configuration of recently isolated eburnane alkaloids from Malaysian Kopsia and Leuconotis species by X-ray diffraction analysis and ECD/TDDFT has revealed the existence of biosynthetic enantiodivergence. Three different scenarios are discerned with respect to the composition of the enantiomeric eburnane alkaloids in these plants: first, where the new eburnane congeners possess the same C-20, C-21 absolute configurations as the common eburnane alkaloids (eburnamonine, eburnamine, isoeburnamine, eburnamenine) occurring in the same plant; second, where the new eburnane congeners possess opposite or enantiomeric C-20, C-21 absolute configurations compared to the common eburnane alkaloids found in the same plant; and, third, where the four common eburnane alkaloids were isolated as racemic or scalemic mixtures, while the new eburnane congeners were isolated as pure enantiomers with a common C-20, C-21 configuration (20α, 21α). Additionally, the same Kopsia species (K. pauciflora) found in two different geographical locations (Peninsular Malaysia and Malaysian Borneo) showed different patterns in the composition of the enantiomeric eburnane alkaloids. Revision of the absolute configurations of a number of new eburnane congeners (previously assigned based on the assumption of a common biogenetic origin to that of the known eburnane alkaloids co-occurring in the same plant) is required based on the present results.
    Matched MeSH terms: Indole Alkaloids/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links