Displaying all 3 publications

Abstract:
Sort:
  1. Kim J, Hwang Y, Yoo M, Chen S, Lee IM
    Environ Sci Pollut Res Int, 2017 Nov;24(32):25137-25145.
    PMID: 28924945 DOI: 10.1007/s11356-017-0152-6
    In this study, the chemical substance flow of hydrogen fluoride (hydrofluoric acid, HF) in domestic chemical industries in 2014 was analyzed in order to provide a basic material and information for the establishment of organized management system to ensure safety during HF applications. A total of 44,751 tons of HF was made by four domestic companies (in 2014); import amount was 95,984 tons in 2014 while 21,579 tons of HF was imported in 2005. The export amount of HF was 2180 tons, of which 2074 ton (China, 1422 tons, U.S. 524 tons, and Malaysia, 128 tons) was exported for the manufacturing of semiconductors. Based on the export and import amounts, it can be inferred that HF was used for manufacturing semiconductors. The industries applications of 161,123 tons of HF were as follows: manufacturing of basic inorganic chemical substance (27,937 tons), manufacturing of other chemical products such as detergents (28,208 tons), manufacturing of flat display (24,896 tons), and manufacturing of glass container package (22,002 tons). In this study, an analysis of the chemical substance flow showed that HF was mainly used in the semiconductor industry as well as glass container manufacturing. Combined with other risk management tools and approaches in the chemical industry, the chemical substance flow analysis (CSFA) can be a useful tool and method for assessment and management. The current CSFA results provide useful information for policy making in the chemical industry and national systems. Graphical abstract Hydrogen fluoride chemical substance flows in 2014 in South Korea.
    Matched MeSH terms: Hydrofluoric Acid/chemistry*
  2. Burham N, Hamzah AA, Majlis BY
    Biomed Mater Eng, 2014;24(6):2203-9.
    PMID: 25226919 DOI: 10.3233/BME-141032
    This paper studies parameters which affect the pore size diameter of a silicon membrane. Electrochemical etching is performed in characterise the parameter involved in this process. The parameter has been studied is volume ratio of hydrofluoric acid (HF) and ethanol as an electrolyte aqueous for electrochemical etch. This electrolyte aqueous solution has been mixed between HF and ethanol with volume ratio 3:7, 5:5, 7:3 and 9:1. As a result, the higher volume of HF in this electrolyte gives the smallest pore size diameter compared to the lower volume of HF. These samples have been dipped into HF and ethanol electrolyte aqueous with supplied 25 mA/cm2 current density for 20, 30, 40, and 50 minutes. The samples will inspect under Scanning Electron Microscope (SEM) to execute the pore formations on silicon membrane surface.
    Matched MeSH terms: Hydrofluoric Acid/chemistry*
  3. Gupta S, Parolia A, Jain A, Kundabala M, Mohan M, de Moraes Porto IC
    J Indian Soc Pedod Prev Dent, 2015 Jul-Sep;33(3):245-9.
    PMID: 26156281 DOI: 10.4103/0970-4388.160402
    The aim of this in vitro study was an attempt to investigate the effect of different surface treatments on the bond strength between pre-existing composite and repair composite resin.
    Matched MeSH terms: Hydrofluoric Acid/chemistry*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links