METHODS: This study examined the composition purity of PCAV through a decomplexation proteomic approach, applying size-exclusion chromatography (SEC), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and tandem mass spectrometry liquid chromatography-tandem mass spectrometry (LC-MS/MS).
RESULTS: SDS-PAGE and SEC showed that the major protein in PCAV (constituting ∼80% of total proteins) is approximately 110 kDa, consistent with the F(ab')2 molecule. This protein is reducible into two subunits suggestive of the light and heavy chains of immunoglobulin G. LC-MS/MS further identified the proteins as equine immunoglobulins, representing the key therapeutic ingredient of this biologic product. However, protein impurities, including fibrinogens, alpha-2-macroglobulins, albumin, transferrin, fibronectin and plasminogen, were detected at ∼20% of the total antivenom proteins, unveiling a concern for hypersensitivity reactions.
CONCLUSIONS: Together, the findings show that PCAV contains a favorable content of F(ab')2 for neutralization, while the antibody purification process awaits improvement to minimize the presence of protein impurities.
STUDY DESIGN: Experimental.
SAMPLE POPULATION: Fourteen equine cadaver limbs/horses.
METHODS: Simulated fractures were repaired with 2 lag screws under 4-Nm insertion torque (linear repair). Computed tomography (CT) imaging was performed with the leg unloaded and loaded to forces generated while walking. The fracture repair was revised to include 3 lag screws placed with the same insertion torque (triangular repair) prior to CT. The width of the fracture gap was assessed qualitatively by 2 observers and graded on the basis of gap measurements relative to the average voxel size at dorsal, mid, and palmar P1 sites. Interobserver agreement was assessed with Cohen's κ. The effect of repair type, loading condition, and measurement site on fracture gap grades was evaluated by using Kendall's τ-b correlation coefficients and paired nonparametric tests. Significance was set at P ≤ .05.
RESULTS: Agreement between loading and fracture gap widening was fair in triangular (κ = 0.53) and excellent in linear (κ = 0.81) repairs. Loading resulted in fracture gap distraction in linear repairs (Plinear = .008). Triangular repairs reduced fractures better irrespective of loading (Punloaded = .003; Ploaded
OBJECTIVES: To investigate the clinical features of the thoracolumbar region associated with BP in horses and to use some of the clinical features to classify equine BP.
METHODS: Twenty-four horses comprised of 14 with BP and 10 apparently healthy horses were assessed for clinical abnormality that best differentiate BP from normal horses. The horses were then graded (0-5) using the degree of pain response, muscular hypertonicity, thoracolumbar joint stiffness and overall physical dysfunction of the horse.
RESULTS: The common clinical features that significantly differentiate horses with BP from non-BP were longissimus dorsi spasm at palpation (78.6%), paravertebral muscle stiffness (64.3%), resist lateral bending (64.3%), and poor hindlimb impulsion (85.7%). There were significantly (p < 0.05) higher scores for pain response to palpation, muscular hypertonicity, thoracolumbar joint stiffness and physical dysfunction among horses with BP in relation to non-BP. A significant relationship exists between all the graded abnormalities. Based on the cumulative score, horses with BP were categorized into mild, mild-moderate, moderate and severe cases.
CONCLUSIONS: BP in horse can be differentiated by severity of pain response to back palpation, back muscle hypertonicity, thoracolumbar joint stiffness, physical dysfunctions and their cumulative grading score is useful in the assessment and categorization of BP in horses.