Displaying all 4 publications

Abstract:
Sort:
  1. Ng KH
    Australas Phys Eng Sci Med, 2008 Jun;31(2):85-9.
    PMID: 18697700
    From the time when Roentgen and other physicists made the discoveries which led to the development of radiology, radiotherapy and nuclear medicine, medical physicists have played a pivotal role in the development of new technologies that have revolutionized the way medicine is practiced today. Medical physicists have been transforming scientific advances in the research laboratories to improving the quality of life for patients; indeed innovations such as computed tomography, positron emission tomography and linear accelerators which collectively have improved the medical outcomes for millions of people. In order for radiation-delivery techniques to improve in targeting accuracy, optimal dose distribution and clinical outcome, convergence of imaging and therapy is the key. It is timely for these two specialties to work closer again. This can be achieved by means of cross-disciplinary research, common conferences and workshops, and collaboration in education and training for all. The current emphasis is on enhancing the specific skill development and competency of a medical physicist at the expense of their future roles and opportunities. This emphasis is largely driven by financial and political pressures for optimizing limited resources in health care. This has raised serious concern on the ability of the next generation of medical physicists to respond to new technologies. In addition in the background loom changes of tsunami proportion. The clearly defined boundaries between the different disciplines in medicine are increasingly blurred and those between diagnosis, therapy and management are also following suit. The use of radioactive particles to treat tumours using catheters, high-intensity focused ultrasound, electromagnetic wave ablation and photodynamic therapy are just some areas challenging the old paradigm. The uncertainty and turf battles will only explode further and medical physicists will not be spared. How would medical physicists fit into this changing scenario? We are in the midst of molecular revolution. Are we prepared to explore the newer technologies such as nanotechnology, drug discovery, pre-clinical imaging, optical imaging and biomedical informatics? How are our curricula adapting to the changing needs? We should remember the late Professor John Cameron who advocated imagination and creativity - these important attributes will make us still relevant in 2020 and beyond. To me the future is clear: "To achieve more, we should imagine together."
    Matched MeSH terms: Health Physics/education*; Health Physics/trends*
  2. Kron T, Healy B, Ng KH
    Phys Med, 2016 Jul;32(7):883-8.
    PMID: 27320695 DOI: 10.1016/j.ejmp.2016.06.001
    OBJECTIVE: Our study aims to assess and track work load, working conditions and professional recognition of radiation oncology medical physicists (ROMPs) in the Asia Pacific Region over time.

    METHODS: A structured questionnaire was mailed in 2008, 2011 and 2014 to senior medical physicists representing 23 countries. The questionnaire covers 7 themes: education and training including certification; staffing; typical tasks; professional organisations; resources; research and teaching; job satisfaction.

    RESULTS: Across all surveys the response rate was >85% with the replies representing practice affecting more than half of the world's population. The expectation of ROMP qualifications (MSc and between 1 and 3years of clinical experience) has not changed much over the years. However, compared to 2008, the number of medical physicists in many countries has doubled. Formal professional certification is only available in a small number of countries. The number of experienced ROMPs is small in particular in low and middle income countries. The increase in staff numbers from 2008 to 2014 is matched by a similar increase in the number of treatment units which is accompanied by an increase in treatment complexity. Many ROMPs are required to work overtime and not many find time for research. Resource availability has only improved marginally and ROMPs still feel generally overworked, but professional recognition, while varying widely, appears to be improving slowly.

    CONCLUSION: While number of physicists and complexity of treatment techniques and technologies have increased significantly, ROMP practice remains essentially unchanged over the last 6years in the Asia Pacific Region.

    Matched MeSH terms: Health Physics/trends*
  3. Ng KH, Cheung KY, Hu YM, Inamura K, Kim HJ, Krisanachinda A, et al.
    Australas Phys Eng Sci Med, 2009 Dec;32(4):175-9.
    PMID: 20169835
    This document is the first of a series of policy statements being issued by the Asia-Oceania Federation of Organizations for Medical Physics (AFOMP). The document was developed by the AFOMP Professional Development Committee (PDC) and was endorsed for official release by AFOMP Council in 2006. The main purpose of the document was to give guidance to AFOMP member organizations on the role and responsibilities of clinical medical physicists. A definition of clinical medical physicist has also been provided. This document discusses the following topics: professional aspects of education and training; responsibilities of the clinical medical physicist; status and organization of the clinical medical physics service and the need for clinical medical physics service.
    Matched MeSH terms: Health Physics/education*
  4. Alanazi A, Alkhorayef M, Alzimami K, Jurewicz I, Abuhadi N, Dalton A, et al.
    Appl Radiat Isot, 2016 Nov;117:106-110.
    PMID: 26777569 DOI: 10.1016/j.apradiso.2016.01.001
    Graphite ion chambers and semiconductor diode detectors have been used to make measurements in phantoms but these active devices represent a clear disadvantage when considered for in vivo dosimetry. In such circumstance, dosimeters with atomic number similar to human tissue are needed. Carbon nanotubes have properties that potentially meet the demand, requiring low voltage in active devices and an atomic number similar to adipose tissue. In this study, single-wall carbon nanotubes (SWCNTs) buckypaper has been used to measure the beta particle dose deposited from a strontium-90 source, the medium displaying thermoluminescence at potentially useful sensitivity. As an example, the samples show a clear response for a dose of 2Gy. This finding suggests that carbon nanotubes can be used as a passive dosimeter specifically for the high levels of radiation exposures used in radiation therapy. Furthermore, the finding points towards further potential applications such as for space radiation measurements, not least because the medium satisfies a demand for light but strong materials of minimal capacitance.
    Matched MeSH terms: Health Physics/instrumentation; Health Physics/methods
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links