Displaying publications 1 - 20 of 89 in total

Abstract:
Sort:
  1. Abd Hamid NA, Hasrul MA, Ruzanna RJ, Ibrahim IA, Baruah PS, Mazlan M, et al.
    Nutr J, 2011;10:37.
    PMID: 21513540 DOI: 10.1186/1475-2891-10-37
    Exercise is beneficial to health, but during exercise the body generates reactive oxygen species (ROS) which are known to result in oxidative stress. The present study analysed the effects of vitamin E (Tri E®) on antioxidant enzymes; superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (Cat) activity and DNA damage in rats undergoing eight weeks exercise.
    Matched MeSH terms: Glutathione Peroxidase/drug effects; Glutathione Peroxidase/metabolism
  2. Lee SK, Sirajudeen KN, Sundaram A, Zakaria R, Singh HJ
    Clin Exp Pharmacol Physiol, 2011 Dec;38(12):854-9.
    PMID: 21973174 DOI: 10.1111/j.1440-1681.2011.05624.x
    1. The hypotensive effect of cross-fostering in spontaneously hypertensive rats (SHR) is thought to involve adjustments in renal function. However, its association with renal anti-oxidant/oxidant balance during cross-fostering is not known. 2. The present study examined the effect of cross-fostering and in-fostering of 1-day-old offspring between SHR and Wistar-Kyoto (WKY) dams on renal anti-oxidant/oxidant status and systolic blood pressure (SBP). Renal anti-oxidant/oxidant status and SBP were determined in the offspring from 4-16 weeks of age. 3. Cross-fostered SHR had significantly lower SBP than in-fostered SHR at 6, 8 and 12 weeks, but not at 16 weeks (127 ± 1 vs 144 ± 2, 138 ± 1 vs 160 ± 1, 174 ± 2 vs 184 ± 2 and 199 ± 2 vs 194 ± 3 mmHg at 6, 8, 12 and 16 weeks, respectively). No differences in SBP were evident between cross-fostered and in-fostered WKY rats. There were no significant differences in levels of thiobarbituric acid-reactive substances (TBARS), protein carbonyl and total anti-oxidant status (TAS) or superoxide dismutase, catalase, glutathione peroxidase (GPx), glutathione S-transferase and glutathione reductase activity between cross-fostered and in-fostered SHR or WKY offspring. However, compared with WKY rats, catalase activity was higher at 6 and 16 weeks, TAS was higher at 16 weeks and GPx activity and TBARS were lower at 16 weeks in SHR. 4. It appears that cross-fostering of SHR offspring to WKY dams during the early postnatal period causes a transient delay in the rise in blood pressure in SHR and that this does not involve the renal anti-oxidant/oxidant system.
    Matched MeSH terms: Glutathione Peroxidase/analysis; Glutathione Peroxidase/metabolism*
  3. Ngah WZ, Shamaan NA, Said MH, Azhar MT
    Eur Arch Otorhinolaryngol, 1993;250(5):304-7.
    PMID: 8105826
    Plasma gamma-glutamyltranspeptidase (gamma-GT), glutathione peroxidase (GPx) and glutathione reductase (GR) activities were determined in normal and nasopharyngeal carcinoma (NPC) patients. No difference in enzyme activities was observed in the three major races of the Malaysian population, i.e. Malay, Chinese and Indian patients. However, plasma gamma-GT, erythrocyte glutathione S-transferase (GST) and GPx activities were significantly increased in all NPC patients, while GR activity remained unchanged. Patients with elevated plasma gamma-GT activities also had increased GST and GPx activities. Plasma gamma-GT and GPx activities were then found to be affected by treatment. Patients with plasma gamma-GT activity greater than 70 IU/l had very poor prognoses but patients with decreased gamma-GT activities were found to be in remission.
    Matched MeSH terms: Glutathione Peroxidase/blood*
  4. Ahmad TA, Jubri Z, Rajab NF, Rahim KA, Yusof YA, Makpol S
    Molecules, 2013 Feb 11;18(2):2200-11.
    PMID: 23434870 DOI: 10.3390/molecules18022200
    The present study was designed to determine the radioprotective effects of Malaysian Gelam honey on gene expression and enzyme activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) of human diploid fibroblasts (HDFs) subjected to gamma-irradiation. Six groups of HDFs were studied: untreated control, irradiated HDFs, Gelam honey-treated HDFs and HDF treated with Gelam honey pre-, during- and post-irradiation. HDFs were treated with 6 mg/mL of sterilized Gelam honey (w/v) for 24 h and exposed to 1 Gray (Gy) of gamma rays at the dose rate of 0.25 Gy/min. Gamma-irradiation was shown to down-regulate SOD1, SOD2, CAT and GPx1 gene expressions (p < 0.05). Conversely, HDFs treated with Gelam honey alone showed up-regulation of all genes studied. Similarly, SOD, CAT and GPx enzyme activities in HDFs decreased with gamma-irradiation and increased when cells were treated with Gelam honey (p < 0.05). Furthermore, of the three different stages of study treatment, pre-treatment with Gelam honey caused up-regulation of SOD1, SOD2 and CAT genes expression and increased the activity of SOD and CAT. As a conclusion, Gelam honey modulates the expression of antioxidant enzymes at gene and protein levels in irradiated HDFs indicating its potential as a radioprotectant agent.
    Matched MeSH terms: Glutathione Peroxidase/genetics; Glutathione Peroxidase/metabolism
  5. Musalmah M, Nizrana MY, Fairuz AH, NoorAini AH, Azian AL, Gapor MT, et al.
    Lipids, 2005 Jun;40(6):575-80.
    PMID: 16149736
    The effect of supplementing 200 mg/kg body weight palm vitamin E (PVE) and 200 mg/kg body weight alpha-tocopherol (alpha-Toc) on the healing of wounds in streptozotocin-induced diabetic rats was evaluated. The antioxidant potencies of these two preparations of vitamin E were also evaluated by determining the antioxidant enzyme activities, namely, glutathione peroxidase (GPx) and superoxide dismutase (SOD), and malondialdehyde (MDA) levels in the healing of dermal wounds. Healing was evaluated by measuring wound contractions and protein contents in the healing wounds. Cellular redistribution and collagen deposition were assessed morphologically using cross-sections of paraffin-embedded day-10 wounds stained according to the Van Gieson method. GPx and SOD activities as well as MDA levels were determined in homogenates of day-10 dermal wounds. Results showed that PVE had a greater potency to enhance wound repair and induce the increase in free radical-scavenging enzyme activities than alpha-Toc. Both PVE and alpha-Toc, however, were potent antioxidants and significantly reduced the lipid peroxidation levels in the wounds as measured by the reduction in MDA levels.
    Matched MeSH terms: Glutathione Peroxidase/drug effects; Glutathione Peroxidase/metabolism
  6. Musalmah M, Fairuz AH, Gapor MT, Ngah WZ
    Asia Pac J Clin Nutr, 2002;11 Suppl 7:S448-51.
    PMID: 12492633
    Vitamin E is composed of various subfamilies that include tocopherols and tocotrienols. These compounds have antioxidant properties but differ in structure, dietary source and potency. In this study we evaluated the efficacy of alpha-tocopherol as an antioxidant and its role in wound closure in normal and streptozotocin-induced diabetic rats. The healing of 6 cm linear incisions created on the back of each male Sprague-Dawley rat (250-300 g) was monitored by measuring the length of the wounds daily. The rats were divided into two categories; normal and streptozotocin-induced diabetic rats. For each category, the animals were further divided into two groups; those untreated and those receiving 200 mg/kg bodyweight alpha-tocopherols daily by oral gavage. All rats were fed standard food and water ad libitum. Blood samples were taken at 0, 5 and 10 days after the wounds were created for the determination of malondialdehyde levels and red cell superoxide dismutase, catalase and glutathione peroxidase activities. The results showed that alpha-tocopherol reduced plasma malondialdehyde levels, increased glutathione peroxidase activity and accelerated the rate of wound closure in treated rats.
    Matched MeSH terms: Glutathione Peroxidase/blood; Glutathione Peroxidase/metabolism
  7. Almabhouh FA, Osman K, Ibrahim SF, Gupalo S, Gnanou J, Ibrahim E, et al.
    Asian J Androl, 2016 10 18;19(6):647-654.
    PMID: 27748315 DOI: 10.4103/1008-682X.183379
    This study examined the effects of melatonin on leptin-induced changes in sperm parameters in adult rats. Five groups of Sprague-Dawley rats were treated with either leptin or leptin and melatonin or melatonin for 6 weeks. Leptin was given daily via the intraperitoneal route (60 μg kg-1 body weight) and melatonin was given in drinking water (10 mg kg-1 or 20 mg kg-1 body weight per day). Upon completion, sperm count, sperm morphology, 8-hydroxy-2-deoxyguanosine, Comet assay, TUNEL assay, gene expression profiles of antioxidant enzymes, respiratory chain reaction enzymes, DNA damage, and apoptosis genes were estimated. Data were analyzed using ANOVA. Sperm count was significantly lower whereas the fraction of sperm with abnormal morphology, the level of 8-hydroxy-2-deoxyguanosine, and sperm DNA fragmentation were significantly higher in rats treated with leptin only. Microarray analysis revealed significant upregulation of apoptosis-inducing factor, histone acetyl transferase, respiratory chain reaction enzyme, cell necrosis and DNA repair genes, and downregulation of antioxidant enzyme genes in leptin-treated rats. Real-time polymerase chain reaction showed significant decreases in glutathione peroxidase 1 expression with increases in the expression of apoptosis-inducing factor and histone acetyl transferase in leptin-treated rats. There was no change in the gene expression of caspase-3 (CASP-3). In conclusion, the adverse effects of leptin on sperm can be prevented by concurrent melatonin administration.
    Matched MeSH terms: Glutathione Peroxidase/genetics; Glutathione Peroxidase/metabolism
  8. Sundaram A, Siew Keah L, Sirajudeen KN, Singh HJ
    Hypertens Res, 2013 Mar;36(3):213-8.
    PMID: 23096233 DOI: 10.1038/hr.2012.163
    Although oxidative stress has been implicated in the pathogenesis of hypertension in spontaneously hypertensive rats (SHRs), there is little information on the levels of primary antioxidant enzymes status (AOEs) in pre-hypertensive SHR. This study therefore determined the activities of primary AOEs and their mRNA levels, levels of hydrogen peroxide (H2O2), malondialdehyde (MDA) and total antioxidant status (TAS) in whole kidneys of SHR and age-matched Wistar-Kyoto (WKY) rats aged between 2 and 16 weeks. Compared with age-matched WKY rats, catalase (CAT) activity was significantly higher from the age of 2 weeks (P<0.001) and glutathione peroxide (GPx) activity was lower from the age of 3 weeks (P<0.001) in SHR. CAT mRNA levels were significantly higher in SHR aged 2, 4, 6 and 12 weeks. GPx mRNA levels were significantly lower in SHR at 8 and 12 weeks. Superoxide dismutase activity or its mRNA levels were not different between the two strains. H2O2 levels were significantly lower in SHR from the age of 8 weeks (P<0.01). TAS was significantly higher in SHR from the age of 3 weeks (P<0.05). MDA levels were only significantly higher at 16 weeks of age in the SHR (P<0.05). The data suggest that altered renal CAT and GPx mRNA expression and activity precede the development of hypertension in SHR. The raised CAT activity perhaps contributes to the higher TAS and lower H2O2 levels in SHR. In view of these findings, the precise role of oxidative stress in the pathogenesis of hypertension in SHR needs to be investigated further.
    Matched MeSH terms: Glutathione Peroxidase/genetics; Glutathione Peroxidase/metabolism*
  9. Aghwan ZA, Sazili AQ, Alimon AR, Goh YM, Hilmi M
    Asian-Australas J Anim Sci, 2013 Nov;26(11):1577-82.
    PMID: 25049744 DOI: 10.5713/ajas.2013.13180
    The effects of dietary supplementation of selenium (Se), iodine (I), and a combination of both on the blood haematology, serum free thyroxine (FT4) and free triiodothyronine (FT3) hormones and glutathione peroxidase enzyme (GSH-Px) activity were examined on twenty four (7 to 8 months old, 22±1.17 kg live weight) Kacang crossbred male goats. Animals were randomly assigned to four dietary treatments (6 animals in each group). Throughout 100 d of feeding trial, the animals of control group (CON) received a basal diet, while the other three groups were offered basal diet supplemented with 0.6 mg/kg diet DM Se (SS), or 0.6 mg/kg diet DM I (PI), or a combination of both Se and I, each at 0.6 mg/kg diet DM (SSPI). The haematological attributes which are haemoglobin (Hb), red blood cell (RBC), packed cell volume (PCV), mean cell volume (MCV), white blood cells (WBC), band neutrophils (B Neut), segmented neutrophils (S Neut), lymphocytes (Lymph), monocytes (Mono), eosinophils (Eosin) and basophils (Baso) were similar among the four treatment groups, while serum levels of Se and I increased significantly (p<0.05) in the supplemented groups. The combined dietary supplementation of Se and I (SSPI) significantly increased serum FT3 in the supplemented animals. Serum GSH-Px activity increased significantly in the animals of SS and SSPI groups. It is concluded that the dietary supplementation of inorganic Se and I at a level of 0.6 mg/kg DM increased serum Se and I concentration, FT3 hormone and GSH-Px activity of Kacang crossbred male goats.
    Matched MeSH terms: Glutathione Peroxidase
  10. Azeem E, Gillani SW, Siddiqui A, Mian RI, Poh V, Sulaiman SA, et al.
    Curr Diabetes Rev, 2016;12(3):279-84.
    PMID: 25989845 DOI: 10.2174/1573399811666150520094631
    Background/aim: Diabetes mellitus (DM) is a considerable systemic metabolic disorder to exhibit various metabolic and cardiovascular disorders, mainly hyperglycemia. Our study aims to evaluate oxidative stress markers in DM patients and to determine the clinical correlates affecting the investigational parameters.

    Methodology: To evaluate oxidative stress, the following parameters were included: tri-glycerides(TG), total cholesterol, low density lipoprotein cholesterol(LDL), oxidized LDL cholesterol(Ox LDL), superoxide dismutase(SOD), glutathione peroxidase(GSH-Px) and plasminogen activator inhibitor(PAI) which were measured at single observation point. Patient clinical and demographic data were taken from registered medication profiles from the Outpatient Department.

    Results: The diabetic subjects have significantly high measured values of endocrine(p<0.01), metabolic(p<0.01) and antioxidant parameters(p<0.05), and have significant higher values of TG(3.69±1.27 vs 1.79±0.84 mmol/L, p< 0.01), Ox LDL(85.37±19.1 vs 77.11±26.64 mmol/L, p<0.05) and SOD enzyme activity(918.78 ± 145.39 vs 880.08±149.52 U/g Hb, p<0.05) compared to the controls. A significant negative correlation was found between Ox LDL and HbA1c(r = -0.6782, p < 0.001) among diabetic subjects.

    Conclusion: Elevated Ox-LDL, SOD and GSH-Px are associated with the diabetic patients. However, oxidative stress threshold values also showed high oxidative activity markers among controls. Clinical variables showed predictive information on oxidative activity among diabetes patients.
    Matched MeSH terms: Glutathione Peroxidase
  11. Ima-Nirwana S, Merican Z, Jamaluddin M, Viswanathan P, Khalid BA
    Asia Pac J Clin Nutr, 1996 Jun;5(2):100-4.
    PMID: 24394519
    The atherogenic potential of soybean oil (Sb) and palm oil (PO) was compared by measuring lipid profile, lipid peroxidation (LP) and activity of the antioxidant enzyme glutathione peroxidase (GSHPx) in rat sera and liver and heart homogenates. Male Rattus norwegicus rats were fed a basal diet, or basal diet fortified with 20% weight/ weight Sb or PO for 4 or 9 months. There was no difference in high density lipoprotein cholesterol:low density lipoprotein cholesterol ratio between the two groups, but triglyceride concentrations were higher in the PO fed rats compared to the Sb fed rats, although the difference diminished after 9 months. No differences in serum LP and GSHPx activity were seen between the two groups. In the liver and heart, LP was lower in PO after 4 months feeding, but the reverse was seen after 9 months. Liver and heart GSHPx activity was higher in the PO group after both treatment periods. In conclusion, both PO and Sb fed rats appeared comparable in their lipid profile, but the PO food had a temporary beneficial effect on the LP process in liver and heart. GSHPx activity however did not correlate well with LP in liver and heart, suggesting involvement of other antioxidants.
    Matched MeSH terms: Glutathione Peroxidase
  12. Rahmat A, Wan Ngah WZ, Gapor A, Khalid BA
    Asia Pac J Clin Nutr, 1993 Sep;2(3):129-34.
    PMID: 24352144
    The effects of long-term administration of tocotrienol on hepatocarcinogenesis in rats induced by diethyl nitrosamine (DEN) and 2-acetylaminofluorene (AAF) were investigated by the determination of plasma and liver gamma-glutamyl transpeptidase (GGT), cytosolic glutathione reductase (GSSG-Rx), glutathione peroxidase (GSH-Px) and glutathione S-transferase (GST). Twenty-eight male Rattus norwegicus rats (120-160g) were divided according to treatments into four groups: control group, tocotrienol - supplemented diet group (30mg/kg food), DEN/AAF-treated group and DEN/AAF treated plus tocotrienol-supplemented-diet group (30mg/kg food). The rats were sacrificed after nine months. The results obtained indicated no difference in the morphology and histology of the livers of control and tocotrienol-treated rats. Greyish-white neoplastic nodules (two per liver) were found in all the DEN/ AAF treated rats (n-10) whereas only one nodule was found in one of the carcinogen treated rats receiving tocotrienol supplementation (n-6). Histological examination showed obvious cellular damage for both the DEN/AAF-treated rats and the tocotrienol-supplemented rats but were less severe in the latter. Treatment with DEN/AAF caused increases in GGT, GSH-Px, GST and GSSG-Rx activities when compared to controls. These increases were also observed when tocotrienol was supplemented with DEN/AAF but the increases were less when compared to the rats receiving DEN/AAF only.
    Matched MeSH terms: Glutathione Peroxidase
  13. Marcus SR, Chandrakala MV, Nadiger HA
    Asia Pac J Clin Nutr, 1998 Dec;7(3/4):201-5.
    PMID: 24393672
    The protection against ethanol-induced lipid peroxidation is rendered by antioxidants such as vitamin E and glutathione (GSH) interacting with each other and also functioning independently. A study of the levels of GSH and activities of glutathione peroxidase (GP), glutathione reductase (GR) and glutathione transferase (GST) in the cerebral cortex (CC), cerebellum (CB) and brain stem (BS) of vitamin E-supplemented and -deficient rats subjected to ethanol administration for 30 days was carried out. Chronic ethanol administration to vitamin E-supplemented rats elevated GP, GR and GST activities in the three regions and GSH levels in the CB. Chronic ethanol administration to vitamin E-deficient rats elevated GR activity in the three regions and GP activity in the CC and CB, decreased GST activity in the CC and CB, but did not alter GSH levels compared with normal rats subjected to chronic ethanol administration. The results indicate that vitamin E helps to maintain GSH levels to combat increased peroxidation while its absence has a deleterious effect.
    Matched MeSH terms: Glutathione Peroxidase
  14. Soelaiman IN, Merican Z, Mohamed J, Kadir KB
    Asia Pac J Clin Nutr, 1996 Dec;5(4):244-8.
    PMID: 24394618
    We determined the relative atherogenicity of two saturated fats by studying their effects on lipid peroxidation (LP), by way of malonaldehyde (MDA) and conjugated dienes (CD) and glutathione peroxidase (GSHPx) activity in serum, liver and heart; and on serum lipid profile after 4 months and 9 months of feeding. Male Rattus norwegicus rats were fed a basal diet (control) or basal diet fortified with 20% weight/weight butterfat (ghee) (BF) or coconut oil (CO). Serum high-density-lipoprotein-cholesterol (HDL-chol) and HDL-chol:LDL-chol ratio was lower in the BF group compared to CO after both feeding periods. Conjugated dienes (CDs) were higher in the serum and liver after 4 months, and heart after 9 months, of the rats fed BF compared to CO. Serum low-density-lipoprotein-cholesterol (LDL-chol) was higher, but CD were lower at 9 months than at 4 months feeding for all three groups. Liver and heart MDA and CD were higher in both groups after 9 months compared to 4 months. Liver GSHPx activity was higher after 9 months compared to 4 months in the BF group. Heart GSHPx activity was lower after 9 months compared to 4 months for both BF and CO groups. In conclusion, BF is potentially more atherogenic than CO in terms of serum lipids and LP. The unfavourable responses in serum lipids, with the exception of triglycerides, and LP were exaggerated with the longer duration of feeding with both oils.
    Matched MeSH terms: Glutathione Peroxidase
  15. Ogar I, Egbung GE, Nna VU, Atangwho IJ, Itam EH
    Life Sci, 2019 Feb 15;219:283-293.
    PMID: 30668955 DOI: 10.1016/j.lfs.2019.01.027
    AIMS: Chronic hyperglycaemia in diabetes mellitus (DM) increases the production of free radicals which results in oxidative stress and related disorders such as cardiovascular diseases, compromised hepatic and renal functions. Hyptis verticillata reportedly demonstrated glucose lowering activity in previous studies. The present study therefore evaluated the effect of H. verticillata on hyperglycaemia-induced dyslipidaemia, hepatorenal distortions, oxidative stress, as well as calculated indices of cardiovascular function.

    METHODS: Wistar rats employed for this study consisted of normoglycaemic and diabetic rats in nine experimental groups. The normoglycaemic and diabetic rats were either treated with metformin (500 mg/kg b.w.), quercetin (10 mg/kg b.w.), or ethanol extract of H. verticillata leaf (250 mg/kg b.w. and 500 mg/kg b.w.) administered orally for 28 days.

    KEY FINDINGS: Results revealed that H. verticillata significantly lowered blood glucose level, attenuated dyslipidaemia, decreased atherogenic coefficient, atherogenic and coronary risk indices, and increased cardioprotective index in diabetic rats. Also, H. verticillata significantly decreased serum urea, creatinine, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and unconjugated bilirubin levels, relative to untreated diabetic rats. Further, H. verticillata increased serum superoxide dismutase, catalase and glutathione peroxidase activities and glutathione level, and decreased malondialdehyde level in diabetic rats in a manner similar to metformin and quercetin. Histopathological investigation of the liver and kidney revealed restored hepatocytes and amelioration of congested interstitial blood vessel of the Bowman's space of the kidneys upon intervention with H. verticillata.

    SIGNIFICANCE: H. verticillata in addition to its anti-hyperglycaemic activity ameliorates oxidative stress, dyslipidaemia, atherogenicity and hepatorenal lesions in DM.

    Matched MeSH terms: Glutathione Peroxidase
  16. Yi Ni Koh, Embong Zunaina, Ahmad Tajudin Liza-Sharmini, Che Badariah Abd-Aziz, Che Hussin Che-Maraina, Mei Fong Chong, et al.
    MyJurnal

    Introduction: Age-related macular degeneration (ARMD) is an ocular degenerative disorder that associated with impairment of central vision. Oxidative stress plays an important role in the pathogenesis of ARMD. The aim of this study was to determine the level of antioxidant enzymes (catalase and glutathione peroxidase) in tears among Malay ARMD patients. Methods: A cross sectional study was conducted between September 2015 and November 2017 among Malay ARMD patients. Schirmer paper was used to collect the tear samples. The level of catalase and glu- tathione peroxidase level in tears was evaluated using commercially available oxidative stress marker kits. Results: A total of 136 Malay ARMD patients were recruited into the study with 68 controls. Mean tear catalase and gluta- thione peroxidase levels were significantly lower in ARMD patients (1348.97 SD 109.11 µM and 453.87 SD 41.96 U/L respectively) as compared to the control group (1453.38 SD 38.87 µM and 502.28 SD 34.29 U/L respectively) (P
    Matched MeSH terms: Glutathione Peroxidase
  17. Wong FN, Chua KH, Tan JAMA, Wong CM, Kuppusamy UR
    PeerJ, 2018;6:e4421.
    PMID: 29610703 DOI: 10.7717/peerj.4421
    Background: Chronic kidney disease (CKD) is characterised by long-term kidney damage and renal function decline. Diabetic CKD is the principal subtype of kidney disease in Malaysia and is associated with oxidative stress which plays an important role in development and progression of the disease. Glycaemic control slows down the progression of diabetic complications, including diabetic CKD. However, the implication of glycaemic control on enzymatic antioxidants and soluble RAGE (sRAGE) in CKD patients remains elusive. The aim of this study was to investigate the effect of glycaemic control on the levels or activities of glutathione peroxidase (GPx), superoxide dismutase (SOD) and sRAGE in CKD patients.

    Methods: A total of 150 CKD patients and 64 non-CKD patients were enrolled. The type 2 diabetic patients in the recruited study participants were categorised based on their glycaemic control; poor glycaemic control (GC) with haemoglobin A1c (HbA1c) > 7% and good GC with HbA1c ≤ 7%. The levels or activities of GPx, SOD and sRAGE in plasma were measured. These biochemical parameters were analysed using Mann-WhitneyUtest and two-way analysis of variance (ANOVA).

    Results: The activities of GPx and SOD as well as plasma level of sRAGE were not significantly different among the CKD patients with varying glycaemic control status. Irrespective of diabetes status and glycaemic control status, CKD patients also exhibited lower plasma SOD activities compared with non-CKD patients. Among the non-CKD patients, SOD activities were significantly higher in diabetic patients with good GC than diabetic patients with poor GC. Two-way ANOVA revealed that both CKD status and glycaemic control had an interaction effect on SOD activities in diabetic subjects with and without CKD. Follow-up analysis showed that SOD activities were significantly higher in non-CKD patients with good GC. There were no overall significant differences in GPx activities among the study participants. Furthermore, plasma sRAGE levels were higher in diabetic patients with CKD than those without CKD, regardless of glycaemic control status. There were no interaction effects between CKD status and glycaemic control status on GPx and sRAGE. Instead, CKD status showed significant main effects on these parameters, indicating significant differences between diabetic subjects with CKD and diabetic subjects without CKD.

    Conclusion: Glycaemic control did not quantitatively alter GPx, SOD and sRAGE in diabetic CKD patients. Despite the advantages of good glycaemic control, a well-controlled diabetes in CKD did not modulate the activities of enzymatic antioxidants and sRAGE levels, therefore may not be the primary mechanism to handle oxidative stress.

    Matched MeSH terms: Glutathione Peroxidase
  18. Ezzat MI, Okba MM, Ahmed SH, El-Banna HA, Prince A, Mohamed SO, et al.
    PLoS One, 2020;15(1):e0226185.
    PMID: 31940365 DOI: 10.1371/journal.pone.0226185
    Phyllanthus niruri L. is a widespread tropical plant which is used in Ayurvedic system for liver and kidney ailments. The present study aims at specifying the most active hepatoprotective extract of P. niruri and applying a bio-guided protocol to identify the active compounds responsible for this effect. P. niruri aerial parts were extracted separately with water, 50%, 70% and 80% ethanol. The cytoprotective activity of the extracts was evaluated against CCl4-induced hepatotoxicity in clone-9 and Hepg2 cells. Bioassay-guided fractionation of the aqueous extract (AE) was accomplished for the isolation of the active compounds. Antioxidant activity was assessed using DPPH (1, 1-diphenyl-2-picrylhydrazyl) radical scavenging method and ferric reducing antioxidant power (FRAP). The in vivo hepatoprotective activity of AE was evaluated in CCl4-induced hepatotoxicity in rats at different doses after determination of its LD50. Pretreatment of clone-9 and Hepg2 with different concentrations of AE (1, 0.1, 0.01 mg/ml) had significantly reduced the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) against CCl4 injures, and restored the activity of the natural antioxidants; glutathione (GSH) and superoxide dismutase (SOD) towards normalization. Fractionation of AE gave four fractions (I-IV). Fractions I, II, and IV showed a significant in vitro hepatoprotective activity. Purification of I, II and IV yielded seven compounds; corilagin C1, isocorilagin C2, brevifolin C3, quercetin C4, kaempferol rhamnoside C5, gallic acid C6, and brevifolin carboxylic acid C7. Compounds C1, C2, C5, and C7 showed the highest (p< 0.001) hepatoprotective potency, while C3, C4, and C6 exhibited a moderate (p< 0.001) activity. The AE exhibited strong antioxidant DPPH (IC50 11.6 ± 2 μg/ml) and FRAP (79.352 ± 2.88 mM Ferrous equivalents) activity. In vivo administration of AE in rats (25, 50, 100 and 200 mg/kg) caused normalization of AST, ALT, alkaline phosphatase (ALP), lactate dehydrogenase (LDH), total cholesterol (TC), triglycyrides (TG), total bilirubin (TB), glucose, total proteins (TP), urea and creatinine levels which were elevated by CCl4. AE also decreased TNF-α, NF-KB, IL-6, IL-8, IL10 and COX-2 expression, and significantly antagonizes the effect of CCl4 on the antioxidant enzymes SOD, catalase (CAT), glutathione reductase (GR), and glutathione peroxidase (GSP). The histopathological study also supported the hepatoprotective effect of AE. P. niruri isolates exhibited a potent hepatoprotective activity against CCl4-induced hepatotoxicity in clone-9 and Hepg2 cell lines through reduction of lipid peroxidation and maintaining glutathione in its reduced form. This is attributable to their phenolic nature and hence antioxidative potential.
    Matched MeSH terms: Glutathione Peroxidase
  19. Ramli NSF, Mat Junit S, Leong NK, Razali N, Jayapalan JJ, Abdul Aziz A
    PeerJ, 2017;5:e3365.
    PMID: 28584708 DOI: 10.7717/peerj.3365
    BACKGROUND: Synthesis of thyroid hormones and regulation of their metabolism involve free radicals that may affect redox balance in the body. Thyroid disorders causing variations in the levels of thyroid hormones may alter cellular oxidative stress. The aim of this study was to measure the antioxidant activities and biomarkers of oxidative stress in serum and red blood cells (RBC) of patients with benign and malignant thyroid disorders and to investigate if changes in the antioxidant activities in these patients were linked to alterations in genes encoding the antioxidant enzymes.

    METHODS: Forty-one patients with thyroid disorders from University of Malaya Medical Centre were recruited. They were categorised into four groups: multinodular goitre (MNG) (n = 18), follicular thyroid adenoma (FTA) (n = 7), papillary thyroid cancer (PTC) (n = 10), and follicular thyroid cancer (FTC) (n = 6). Serum and RBC of patients were analysed for antioxidant activities, antioxidant enzymes, and biomarkers of oxidative stress. Alterations in genes encoding the antioxidant enzymes were analysed using whole exome sequencing and PCR-DNA sequencing.

    RESULTS: Patients with thyroid disorders had significantly higher serum superoxide dismutase (SOD) and catalase (CAT) activities compared to control, but had lower activities in RBC. There were no significant changes in serum glutathione peroxidase (GPx) activity. Meanwhile, GPx activity in RBC was reduced in PTC and FTC, compared to control and the respective benign groups. Antioxidant activities in serum were decreased in the thyroid disorder groups when compared to the control group. The levels of malondialdehyde (MDA) were elevated in the serum of FTA group when compared to controls, while in the RBC, only the MNG and PTC groups showed higher MDA equivalents than control. Serum reactive oxygen species (ROS) levels in PTC group of both serum and RBC were significantly higher than control group. Whole exome sequencing has resulted in identification of 49 single nucleotide polymorphisms (SNPs) in MNG and PTC patients and their genotypic and allelic frequencies were calculated. Analyses of the relationship between serum enzyme activities and the total SNPs identified in both groups revealed no correlation.

    DISCUSSION: Different forms of thyroid disorders influence the levels of antioxidant status in the serum and RBC of these patients, implying varying capability of preventing oxidative stress. A more comprehensive study with a larger target population should be done in order to further evaluate the relationships between antioxidant enzymes gene polymorphisms and thyroid disorders, as well as strengthening the minor evidences provided in literatures.

    Matched MeSH terms: Glutathione Peroxidase
  20. Abboud MM, Al-Rawashde FA, Al-Zayadneh EM
    J Asthma, 2022 Nov;59(11):2154-2161.
    PMID: 34855555 DOI: 10.1080/02770903.2021.2008426
    BACKGROUNDS: The development of asthma is highly affected by exposure to exogenous and endogenous oxidative molecules, but the impact of this exposure on the pathophysiology of asthma has received little attention.

    OBJECTIVES: Evaluating group of selective oxidative stress markers as a tool in the management of asthma disease.

    METHODS: In comparison with matched healthy controls, levels of the oxidant and antioxidant markers: lipid peroxidation malondialdehyde (MDA), Total glutathione (tGSH), Uric acid (UA), Glutathione peroxidase (GPx), Catalase (CAT) superoxide dismutase (SOD), and Total antioxidant capacity (TAC) were assessed in serum and saliva of different asthma groups.

    RESULTS: All oxidative markers in serum and saliva of asthma patients showed significant alterations from normal healthy controls (P  0.05).

    CONCLUSION: Determination of the oxidative markers GPx, CAT, UA in serum or saliva can distinguish asthma from healthy states. The serum levels of UA and TAC are highly effective in monitoring asthma severity, while the salivary GPx, CAT, UA, MDA are beneficial in the management of childhood asthma. Discrimination of the age factor between asthma groups can be achieved by testing GPx, SOD, TAC in serum.

    Matched MeSH terms: Glutathione Peroxidase
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links