Displaying all 6 publications

Abstract:
Sort:
  1. Melenia AT, Jovita S, Utami DI, Tamim R, Holilah H, Bahruji H, et al.
    Int J Biol Macromol, 2024 Nov;281(Pt 2):135705.
    PMID: 39482123 DOI: 10.1016/j.ijbiomac.2024.135705
    Biodiesel production from Calophyllum inophyllum oil in Indonesia produces significant biomass waste, including seed shells. This study explores the conversion of the seed shell of Calophyllum inophyllum into nanocrystalline cellulose (NCC) via consecutive alkalization, bleaching and hydrolysis using various organic acids. Scanning electron microscopy (SEM) analysis showed a reduction in the diameter of cellulose fibers from 21.7 μm to 9.6 μm after alkalinization and bleaching. The hydrolysis process using several organic acids was optimized to produce thermally stable nanocellulose while maintaining its crystallinity. The diameter of the resulting nanofibrous cellulose was 20.53 nm for citric acid, 21.69 nm for maleic acid, and 22.06 nm for formic acid hydrolysis. In particular, lactic acid-derived NCC (NCC-LA) showed the highest crystallinity of 64.22 % with an average diameter of ~13.69 nm. Optimization of hydrolysis parameters using Response Surface Methodology (RSM) suggested 74.79 % crystallinity could be achieved with 6.01 M lactic acid following 3.46 h of hydrolysis at 91.12 °C.
    Matched MeSH terms: Formates/chemistry
  2. Kai T, Mak GL, Wada S, Nakazato T, Takanashi H, Uemura Y
    Bioresour Technol, 2014 Jul;163:360-3.
    PMID: 24813567 DOI: 10.1016/j.biortech.2014.04.030
    In this study, a novel method for the production of biodiesel under mild conditions using fine particles of sodium methoxide formed in dimethyl carbonate (DMC) is proposed. Biodiesel is generally produced from vegetable oils by the transesterification of triglycerides with methanol. However, this reaction produces glycerol as a byproduct, and raw materials are not effectively utilized. Transesterification with DMC has recently been studied because glycerol is not formed in the process. Although solid-state sodium methoxide has been reported to be inactive for this reaction, the catalytic activity dramatically increased with the preparation of fine catalyst powders by crystallization. The transesterification of canola oil with DMC was studied using this catalyst for the preparation of biodiesel. A conversion greater than 96% was obtained at 65°C for 2h with a 3:1M ratio of DMC and oil and 2.0 wt% catalyst.
    Matched MeSH terms: Formates/chemistry*
  3. Cui X, Zhao X, Zeng J, Loh SK, Choo YM, Liu D
    Bioresour Technol, 2014 Aug;166:584-91.
    PMID: 24956030 DOI: 10.1016/j.biortech.2014.05.102
    Oil palm empty fruit bunch (EFB) was pretreated by Formiline process to overcome biomass recalcitrance and obtain hemicellulosic syrup and lignin. Higher formic acid concentration led to more lignin removal but also higher degree of cellulose formylation. Cellulose digestibility could be well recovered after deformylation with a small amount of lime. After digested by enzyme loading of 15 FPU+10 CBU/g solid for 48 h, the polysaccharide conversion could be over 90%. Simultaneous saccharification and fermentation (SSF) results demonstrated that ethanol concentration reached 83.6 g/L with approximate 85% of theoretic yield when performed at an initial dry solid consistency of 20%. A mass balance showed that via Formiline pretreatment 0.166 kg of ethanol could be produced from 1 kg of dry EFB with co-production of 0.14 kg of high-purity lignin and 5.26 kg hemicellulosic syrup containing 2.8% xylose. Formiline pretreatment thus can be employed as an entry for biorefining of EFB.
    Matched MeSH terms: Formates/chemistry*
  4. Zeimaran E, Kadir MR, Nor HM, Kamarul T, Djordjevic I
    Bioorg Med Chem Lett, 2013 Dec 15;23(24):6616-9.
    PMID: 24215893 DOI: 10.1016/j.bmcl.2013.10.053
    In this study aliphatic polyacids were synthesized using palm acid oil (PAO) and sunflower oil (SFO) via addition reaction technique. The synthesized materials were characterized using Fourier-transform infra-red (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF-MS) and thermo-gravimetric analysis (TGA). Mixing formic acid and hydrogen peroxide with PAO or SFO at the ratio 3:10:1 produced the lowest iodine value of 10.57 and 9.24 respectively, indicating the increase in epoxidization of both oils. Adding adipic acid to the epoxidized oils at a ratio of 1:10 increases the acid values of SFO and PAO to 11.22 and 6.73 respectively. The existence of multi-acid groups present in synthesized polyacid was confirmed by MALD-ToF-MS. This feature indicates a possible value to the biomaterials development.
    Matched MeSH terms: Formates/chemistry
  5. Azizan KA, Baharum SN, Mohd Noor N
    Molecules, 2012 Jul 03;17(7):8022-36.
    PMID: 22759915 DOI: 10.3390/molecules17078022
    Gas chromatography mass spectrometry (GC-MS) and headspace gas chromatography mass spectrometry (HS/GC-MS) were used to study metabolites produced by Lactococcus lactis subsp. cremoris MG1363 grown at a temperature of 30 °C with and without agitation at 150 rpm, and at 37 °C without agitation. It was observed that L. lactis produced more organic acids under agitation. Primary alcohols, aldehydes, ketones and polyols were identified as the corresponding trimethylsilyl (TMS) derivatives, whereas amino acids and organic acids, including fatty acids, were detected through methyl chloroformate derivatization. HS analysis indicated that branched-chain methyl aldehydes, including 2-methylbutanal, 3-methylbutanal, and 2-methylpropanal are degdradation products of isoleucine, leucine or valine. Multivariate analysis (MVA) using partial least squares discriminant analysis (PLS-DA) revealed the major differences between treatments were due to changes of amino acids and fermentation products.
    Matched MeSH terms: Formates/chemistry
  6. Rizwan M, Yahya R, Hassan A, Yar M, Abd Halim AA, Rageh Al-Maleki A, et al.
    J Mater Sci Mater Med, 2019 Jun 11;30(6):72.
    PMID: 31187295 DOI: 10.1007/s10856-019-6273-3
    The success of wound healing depends upon the proper growth of vascular system in time in the damaged tissues. Poor blood supply to wounded tissues or tissue engineered grafts leads to the failure of wound healing or rejection of grafts. In present paper, we report the synthesis of novel organosoluble and pro-angiogenic chitosan derivative (CSD) by the reaction of chitosan with 1,3-dimethylbarbituric acid and triethylorthoformate (TEOF). The synthesized material was characterized by FTIR and 13C-NMR to confirm the incorporated functional groups and new covalent connectivities. Biodegradability of the synthesized chitosan derivative was tested in the presence of lysozyme and was found to be comparable with CS. The cytotoxicity and apoptosis effect of new derivative was determined against gastric adenocarcinoma (AGS) cells and was found to be non-toxic. The CSD was found to be soluble in majority of organic solvents. It was blended with polycaprolactone (PCL) to form composite scaffolds. From an ex ovo CAM assay, it was noted that CSD stimulated the angiogenesis.
    Matched MeSH terms: Formates/chemistry
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links