Displaying all 3 publications

Abstract:
Sort:
  1. Lee YT, Mohd Ismail NI, Wei LK
    PLoS One, 2021;16(1):e0245038.
    PMID: 33439913 DOI: 10.1371/journal.pone.0245038
    BACKGROUND: Ischemic stroke is one of the non-communicable diseases that contribute to the significant number of deaths worldwide. However, the relationship between microbiome and ischemic stroke remained unknown. Hence, the objective of this study was to perform systematic review on the relationship between human microbiome and ischemic stroke.

    METHODS: A systematic review on ischemic stroke was carried out for all articles obtained from databases until 22nd October 2020. Main findings were extracted from all the eligible studies.

    RESULTS: Eighteen eligible studies were included in the systematic review. These studies suggested that aging, inflammation, and different microbial compositions could contribute to ischemic stroke. Phyla Firmicutes and Bacteroidetes also appeared to manipulate post-stroke outcome. The important role of microbiota-derived short-chain fatty acids and trimethylamine N-oxide in ischemic stroke were also highlighted.

    CONCLUSIONS: This is the first systematic review that investigates the relationship between microbiome and ischemic stroke. Aging and inflammation contribute to differential microbial compositions and predispose individuals to ischemic stroke.

    Matched MeSH terms: Firmicutes/isolation & purification
  2. Chen WL, Tang SGH, Jahromi MF, Candyrine SCL, Idrus Z, Abdullah N, et al.
    Poult Sci, 2019 Jan 01;98(1):56-68.
    PMID: 30137571 DOI: 10.3382/ps/pey366
    The potential use of palm kernel expeller (PKE) as an alternative energy source in broiler diets is limited by the high fiber content. Although enzymatic treatment could alleviate the fiber component and increase the nutritive value of PKE, this apparent improvement is not reflected in the growth response of birds fed with the treated-PKE. As chicken's ceca are the most heavily populated with microflora within their gastrointestinal tract, it was hypothesized that any modulation of the intestinal environment by dietary treatments should be reflected by the composition and activities of the cecal microflora. There is a correlation between cecal microbiota composition and the efficiency of the host to extract energy from the diet and to deposit that energy into improved feed conversion ratio. At present, little is known about the changes on cecal microflora of broilers fed with PKE diets. Hence, this study was designed to assess the effects of feeding different forms of PKE; namely untreated PKE (UPKE), enzyme-treated PKE (EPKE), and oligosaccharides extracted from PKE (OligoPKE), on the cecal microbiota of broiler chickens at 14 d old (day 14) and 28 d old (day 28) using 16S rRNA gene high-throughput next-generation sequencing method. The results showed that temporal changes in cecal microbiota of broiler chickens were evident on day 14 and day 28. The relative abundance of phylum Firmicutes, known to be involved in nutrient uptake and absorption in both age groups was higher in the UPKE as compared to EPKE group. In addition, supplementation of OligoPKE increased (P < 0.05) the relative abundance of Lactobacillus on both D14 and D28, signifying its effect as prebiotics in enhancing growth of indigenous Lactobacillus. Our results showed that cecal microbiota was significantly modulated by dietary treatments and that the lower relative abundance of phylum Firmicutes in chickens fed with EPKE could be a reason why broiler chickens fed with EPKE of higher metabolizable energy (ME) content did not show improvement in their growth performance.
    Matched MeSH terms: Firmicutes/isolation & purification
  3. Osman MA, Neoh HM, Ab Mutalib NS, Chin SF, Mazlan L, Raja Ali RA, et al.
    Sci Rep, 2021 02 03;11(1):2925.
    PMID: 33536501 DOI: 10.1038/s41598-021-82465-0
    Dysbiosis of the gut microbiome has been associated with the pathogenesis of colorectal cancer (CRC). We profiled the microbiome of gut mucosal tissues from 18 CRC patients and 18 non-CRC controls of the UKM Medical Centre (UKMMC), Kuala Lumpur, Malaysia. The results were then validated using a species-specific quantitative PCR in 40 CRC and 20 non-CRC tissues samples from the UMBI-UKMMC Biobank. Parvimonas micra, Fusobacterium nucleatum, Peptostreptococcus stomatis and Akkermansia muciniphila were found to be over-represented in our CRC patients compared to non-CRC controls. These four bacteria markers distinguished CRC from controls (AUROC = 0.925) in our validation cohort. We identified bacteria species significantly associated (cut-off value of > 5 fold abundance) with various CRC demographics such as ethnicity, gender and CRC staging; however, due to small sample size of the discovery cohort, these results could not be further verified in our validation cohort. In summary, Parvimonas micra, Fusobacterium nucleatum, Peptostreptococcus stomatis and Akkermansia muciniphila were enriched in our local CRC patients. Nevertheless, the roles of these bacteria in CRC initiation and progression remains to be investigated.
    Matched MeSH terms: Firmicutes/isolation & purification
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links