Displaying all 8 publications

Abstract:
Sort:
  1. Yong KW, Li Y, Huang G, Lu TJ, Safwani WK, Pingguan-Murphy B, et al.
    Am J Physiol Heart Circ Physiol, 2015 Aug 15;309(4):H532-42.
    PMID: 26092987 DOI: 10.1152/ajpheart.00299.2015
    Cardiac myofibroblast differentiation, as one of the most important cellular responses to heart injury, plays a critical role in cardiac remodeling and failure. While biochemical cues for this have been extensively investigated, the role of mechanical cues, e.g., extracellular matrix stiffness and mechanical strain, has also been found to mediate cardiac myofibroblast differentiation. Cardiac fibroblasts in vivo are typically subjected to a specific spatiotemporally changed mechanical microenvironment. When exposed to abnormal mechanical conditions (e.g., increased extracellular matrix stiffness or strain), cardiac fibroblasts can undergo myofibroblast differentiation. To date, the impact of mechanical cues on cardiac myofibroblast differentiation has been studied both in vitro and in vivo. Most of the related in vitro research into this has been mainly undertaken in two-dimensional cell culture systems, although a few three-dimensional studies that exist revealed an important role of dimensionality. However, despite remarkable advances, the comprehensive mechanisms for mechanoregulation of cardiac myofibroblast differentiation remain elusive. In this review, we introduce important parameters for evaluating cardiac myofibroblast differentiation and then discuss the development of both in vitro (two and three dimensional) and in vivo studies on mechanoregulation of cardiac myofibroblast differentiation. An understanding of the development of cardiac myofibroblast differentiation in response to changing mechanical microenvironment will underlie potential targets for future therapy of cardiac fibrosis and failure.
    Matched MeSH terms: Fibrosis/metabolism
  2. Subramani T, Rathnavelu V, Yeap SK, Alitheen NB
    Mediators Inflamm, 2013;2013:275172.
    PMID: 23431239 DOI: 10.1155/2013/275172
    Mast cells (MCs) are multifunctional effector cells that were originally thought to be involved in allergic disorders. Now it is known that they contain an array of mediators with a multitude of effects on many other cells. MCs have become a recent concern in drug-induced gingival overgrowth (DIGO), an unwanted outcome of systemic medication. Most of the studies have confirmed the significant presence of inflammation as a prerequisite for the overgrowth to occur. The inflammatory changes within the gingival tissue appear to influence the interaction between the inducing drug and the fibroblast activity. The development of antibodies to MC-specific enzymes, tryptase and chymase, has facilitated the study of mast cells in DIGO. Many immunohistochemical studies involving MCs have been conducted; as a result, DIGO tissues are found to have increased the number of MCs in the gingiva, especially in the area of fibrosis. At the cellular level, gingival fibrogenesis is initiated by several mediators which induce the recruitment of a large number of inflammatory cells, including MCs. The purpose of this paper is to access the roles played by MCs in gingival overgrowth to hypothesize a relationship between these highly specialized cells in the pathogenesis of DIGO.
    Matched MeSH terms: Fibrosis/metabolism
  3. Sideek MA, Smith J, Menz C, Adams JRJ, Cowin AJ, Gibson MA
    Int J Mol Sci, 2017 Oct 09;18(10).
    PMID: 28991210 DOI: 10.3390/ijms18102114
    Latent transforming growth factor-β-1 binding protein-2 (LTBP-2) belongs to the LTBP-fibrillin superfamily of extracellular proteins. Unlike other LTBPs, LTBP-2 does not covalently bind transforming growth factor-β1 (TGF-β1) but appears to be implicated in the regulation of TGF-β1 bioactivity, although the mechanisms are largely unknown. In experiments originally designed to study the displacement of latent TGF-β1 complexes from matrix storage, we found that the addition of exogenous LTBP-2 to cultured human MSU-1.1 fibroblasts caused an increase in TGF-β1 levels in the medium. However, the TGF-β1 increase was due to an upregulation of TGF-β1 expression and secretion rather than a displacement of matrix-stored TGF-β1. The secreted TGF-β1 was mainly in an inactive form, and its concentration peaked around 15 h after addition of LTBP-2. Using a series of recombinant LTBP-2 fragments, the bioactivity was identified to a small region of LTBP-2 consisting of an 8-Cys motif flanked by four epidermal growth factor (EGF)-like repeats. The LTBP-2 stimulation of TGF-β expression involved the phosphorylation of both Akt and p38 mitogen-activated protein kinase (MAPK) signalling proteins, and specific inactivation of each protein individually blocked TGF-β1 increase. The search for the cell surface receptor mediating this LTBP-2 activity proved inconclusive. Inhibitory antibodies to integrins β1 and αVβ5 showed no reduction of LTBP-2 stimulation of TGF-β1. However, TGF-β1 upregulation was partially inhibited by anti-αVβ3 integrin antibodies, suggestive of a direct or indirect role for this integrin. Overall, the study indicates that LTBP-2 can directly upregulate cellular TGF-β1 expression and secretion by interaction with cells via a short central bioactive region. This may be significant in connective tissue disorders involving aberrant TGF-β1 signalling.
    Matched MeSH terms: Fibrosis/metabolism
  4. Lan YW, Chen CM, Chong KY
    Methods Mol Biol, 2021;2269:83-92.
    PMID: 33687673 DOI: 10.1007/978-1-0716-1225-5_6
    A co-culture model of mesenchymal stem cells (MSCs) and fibroblasts is an efficient and rapid method to evaluate the anti-fibrotic effects of MSCs-based cell therapy. Transforming growth factor (TGF)-β1 plays a key role in promotion of fibroblast activation and differentiation which can induce collagen deposition, increase ECM production in lung tissue, eventually resulted in pulmonary fibrosis. Here, we use this co-culture system and examine the ECM production in activated fibroblasts by western blot and quantitative real-time analysis to understand the therapeutic effects of MSCs.
    Matched MeSH terms: Pulmonary Fibrosis/metabolism*
  5. Valli H, Ahmad S, Chadda KR, Al-Hadithi ABAK, Grace AA, Jeevaratnam K, et al.
    Mech Ageing Dev, 2017 Oct;167:30-45.
    PMID: 28919427 DOI: 10.1016/j.mad.2017.09.002
    INTRODUCTION: Ageing and several age-related chronic conditions including obesity, insulin resistance and hypertension are associated with mitochondrial dysfunction and represent independent risk factors for atrial fibrillation (AF).

    MATERIALS AND METHODS: Atrial arrhythmogenesis was investigated in Langendorff-perfused young (3-4 month) and aged (>12 month), wild type (WT) and peroxisome proliferator activated receptor-γ coactivator-1β deficient (Pgc-1β-/-) murine hearts modeling age-dependent chronic mitochondrial dysfunction during regular pacing and programmed electrical stimulation (PES).

    RESULTS AND DISCUSSION: The Pgc-1β-/- genotype was associated with a pro-arrhythmic phenotype progressing with age. Young and aged Pgc-1β-/- hearts showed compromised maximum action potential (AP) depolarization rates, (dV/dt)max, prolonged AP latencies reflecting slowed action potential (AP) conduction, similar effective refractory periods and baseline action potential durations (APD90) but shortened APD90 in APs in response to extrasystolic stimuli at short stimulation intervals. Electrical properties of APs triggering arrhythmia were similar in WT and Pgc-1β-/- hearts. Pgc-1β-/- hearts showed accelerated age-dependent fibrotic change relative to WT, with young Pgc-1β-/- hearts displaying similar fibrotic change as aged WT, and aged Pgc-1β-/- hearts the greatest fibrotic change. Mitochondrial deficits thus result in an arrhythmic substrate, through slowed AP conduction and altered repolarisation characteristics, arising from alterations in electrophysiological properties and accelerated structural change.

    Matched MeSH terms: Fibrosis/metabolism
  6. Koh RY, Lim CL, Uhal BD, Abdullah M, Vidyadaran S, Ho CC, et al.
    Mol Med Rep, 2015 May;11(5):3808-13.
    PMID: 25585520 DOI: 10.3892/mmr.2015.3193
    Idiopathic pulmonary fibrosis is a chronic pulmonary disease that is characterized by formation of scar tissue in lungs. Transforming growth factor-β (TGF-β) is considered an important cytokine in the pathogenesis of this disease. Hence, the antifibrotic effect of an inhibitor of the TGF-β type I receptor, namely, SB 431542, was investigated in our study. SB 431542 was used to treat TGF-β-treated IMR-90 cells; the expression of α-smooth muscle actin (α-SMA) was detected at the protein level by using an anti-α-SMA antibody, and at the gene level by reverse transcription-quantitative PCR. The effect of the inhibitor on cell proliferation was determined by a cell growth assay. The inhibitor was also administered into bleomycin-treated mice. Histopathological assessment and determination of total collagen levels were carried out to evaluate the severity of lung fibrosis in these mice. Our results demonstrated that treatment with SB 431542 inhibits TGF-β‑induced α-SMA expression in lung fibroblasts, at both the protein and the mRNA levels (P<0.05). However, the inhibitor did not significantly reduce lung fibroblast proliferation. In the bleomycin-induced pulmonary fibrosis mouse model, bleomycin treatment caused important morphological changes, accompanied by an increase in the collagen level of the lungs. Early treatment with SB 431542 prevented the manifestation of histopathological alterations, whereas delayed treatment significantly decreased the collagen level (P<0.05). These results suggest that inhibition of TGF-β signaling, via inhibition of the activin receptor-like kinase-5 (ALK-5) by SB 431542, may attenuate pulmonary fibrosis.
    Matched MeSH terms: Pulmonary Fibrosis/metabolism*
  7. Lan YW, Yang JC, Yen CC, Huang TT, Chen YC, Chen HL, et al.
    Stem Cell Res Ther, 2019 06 13;10(1):163.
    PMID: 31196196 DOI: 10.1186/s13287-019-1282-1
    INTRODUCTION: Pulmonary emphysema is a major component of chronic obstructive pulmonary disease (COPD). Emphysema progression attributed not only to alveolar structure loss and pulmonary regeneration impairment, but also to excessive inflammatory response, proteolytic and anti-proteolytic activity imbalance, lung epithelial cells apoptosis, and abnormal lung remodeling. To ameliorate lung damage with higher efficiency in lung tissue engineering and cell therapy, pre-differentiating graft cells into more restricted cell types before transplantation could enhance their ability to anatomically and functionally integrate into damaged lung. In this study, we aimed to evaluate the regenerative and repair ability of lung alveolar epithelium in emphysema model by using lung epithelial progenitors which pre-differentiated from amniotic fluid mesenchymal stem cells (AFMSCs).

    METHODS: Pre-differentiation of eGFP-expressing AFMSCs to lung epithelial progenitor-like cells (LEPLCs) was established under a modified small airway growth media (mSAGM) for 7-day induction. Pre-differentiated AFMSCs were intratracheally injected into porcine pancreatic elastase (PPE)-induced emphysema mice at day 14, and then inflammatory-, fibrotic-, and emphysema-related indices and pathological changes were assessed at 6 weeks after PPE administration.

    RESULTS: An optimal LEPLCs pre-differentiation condition has been achieved, which resulted in a yield of approximately 20% lung epithelial progenitors-like cells from AFMSCs in a 7-day period. In PPE-induced emphysema mice, transplantation of LEPLCs significantly improved regeneration of lung tissues through integrating into the lung alveolar structure, relieved airway inflammation, increased expression of growth factors such as vascular endothelial growth factor (VEGF), and reduced matrix metalloproteinases and lung remodeling factors when compared with mice injected with AFMSCs. Histopathologic examination observed a significant amelioration in DNA damage in alveolar cells, detected by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL), the mean linear intercept, and the collagen deposition in the LEPLC-transplanted groups.

    CONCLUSION: Transplantation of predifferentiated AFMSCs through intratracheal injection showed better alveolar regeneration and reverse elastase-induced pulmonary emphysema in PPE-induced pulmonary emphysema mice.

    Matched MeSH terms: Pulmonary Fibrosis/metabolism*
  8. Lan YW, Choo KB, Chen CM, Hung TH, Chen YB, Hsieh CH, et al.
    Stem Cell Res Ther, 2015;6:97.
    PMID: 25986930 DOI: 10.1186/s13287-015-0081-6
    Idiopathic pulmonary fibrosis is a progressive diffuse parenchymal lung disorder of unknown etiology. Mesenchymal stem cell (MSC)-based therapy is a novel approach with great therapeutic potential for the treatment of lung diseases. Despite demonstration of MSC grafting, the populations of engrafted MSCs have been shown to decrease dramatically 24 hours post-transplantation due to exposure to harsh microenvironments. Hypoxia is known to induce expression of cytoprotective genes and also secretion of anti-inflammatory, anti-apoptotic and anti-fibrotic factors. Hypoxic preconditioning is thought to enhance the therapeutic potency and duration of survival of engrafted MSCs. In this work, we aimed to prolong the duration of survival of engrafted MSCs and to enhance the effectiveness of idiopathic pulmonary fibrosis transplantation therapy by the use of hypoxia-preconditioned MSCs.
    Matched MeSH terms: Pulmonary Fibrosis/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links