Enterobacter asburiae L1 is a quorum sensing bacterium isolated from lettuce leaves. In this study, for the first time, the complete genome of E. asburiae L1 was sequenced using the single molecule real time sequencer (PacBio RSII) and the whole genome sequence was verified by using optical genome mapping (OpGen) technology. In our previous study, E. asburiae L1 has been reported to produce AHLs, suggesting the possibility of virulence factor regulation which is quorum sensing dependent. This evoked our interest to study the genome of this bacterium and here we present the complete genome of E. asburiae L1, which carries the virulence factor gene virK, the N-acyl homoserine lactone-based QS transcriptional regulator gene luxR and the N-acyl homoserine lactone synthase gene which we firstly named easI. The availability of the whole genome sequence of E. asburiae L1 will pave the way for the study of the QS-mediated gene expression in this bacterium. Hence, the importance and functions of these signaling molecules can be further studied in the hope of elucidating the mechanisms of QS-regulation in E. asburiae. To the best of our knowledge, this is the first documentation of both a complete genome sequence and the establishment of the molecular basis of QS properties of E. asburiae.
Extensive use of metals in various industrial applications has caused substantial environmental pollution. Molybdenum-reducing bacteria isolated from soils can be used to remove molybdenum from contaminated environments. In this work we have isolated a local bacterium with the capability to reduce soluble molybdate to the insoluble molybdenum blue. We studied several factors that would optimize molybdate reduction. Electron donor sources such as glucose, sucrose, lactose, maltose and fructose (in decreasing efficiency) supported molybdate reduction after 24 h of incubation with optimum glucose concentration for molybdate reduction at 1.5% (w/v). The optimum pH, phosphate and molybdate concentrations, and temperature for molybdate reduction were pH 6.5, 5.0, 25 to 50 mM and 37 degrees C, respectively. The Mo-blue produced by cellular reduction exhibited a unique absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. Metal ions such as chromium, cadmium, copper, silver and mercury caused approximately 73, 71, 81, 77 and 78% inhibition of the molybdenum-reducing activity, respectively. All of the respiratory inhibitors tested namely rotenone, azide, cyanide and antimycin A did not show any inhibition to the molybdenum-reducing activity suggesting components of the electron transport system are not responsible for the reducing activity. The isolate was tentatively identified as Enterobacter sp. strain Dr.Y13 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny.
Enterobacter tabaci 4M9 (CCB-MBL 5004) was reported to have plant growth-promoting and heavy metal tolerance traits. It was able to tolerate more than 300 mg/L Cd, 600 mg/L As, and 500 mg/L Pb and still maintained the ability to produce plant growth-promoting substances under metal stress conditions. To explore the genetic basis of these beneficial traits, the complete genome sequencing of 4M9 was carried out using Pacific Bioscience (PacBio) sequencing technology. The complete genome consisted of one chromosome of 4,654,430 bp with a GC content of 54.6% and one plasmid of 51,135 bp with a GC content of 49.4%. Genome annotation revealed several genes involved in plant growth-promoting traits, including the production of siderophore, indole acetic acid, and 1-aminocyclopropane-1-carboxylate deaminase; solubilization of phosphate and potassium; and nitrogen metabolism. Similarly, genes involved in heavy metals (As, Co, Zn, Cu, Mn, Se, Cd, and Fe) tolerance were detected. These support its potential as a heavy metal-tolerant plant growth-promoting bacterium and a good genetic resource that can be employed to improve phytoremediation efficiency of heavy metal-contaminated soil via biotechnological techniques. This, to the best of our knowledge, is the first report on the complete genome sequence of heavy metal-tolerant plant growth-promoting E. tabaci.
Enterobacter sp. strain SST3 is an endophytic bacterium isolated from Saccharum spp. Here we present its annotated draft genome that may shed light on its role as a bacterial endophyte of sugarcane. To our knowledge, this is the first genome announcement of a sugarcane-associated bacterium from the genus Enterobacter.
Carbapenem-resistant Enterobacteriaceae (CRE) represent an urgent threat to human health. Here we report the application of several complementary whole-genome sequencing (WGS) technologies to characterise a hospital outbreak of blaIMP-4 carbapenemase-producing E. hormaechei. Using Illumina sequencing, we determined that all outbreak strains were sequence type 90 (ST90) and near-identical. Comparison to publicly available data linked all outbreak isolates to a 2013 isolate from the same ward, suggesting an environmental source in the hospital. Using Pacific Biosciences sequencing, we resolved the complete context of the blaIMP-4 gene on a large IncHI2 plasmid carried by all IMP-4-producing strains across different hospitals. Shotgun metagenomic sequencing of environmental samples also found evidence of ST90 E. hormaechei and the IncHI2 plasmid within the hospital plumbing. Finally, Oxford Nanopore sequencing rapidly resolved the true relationship of subsequent isolates to the initial outbreak. Overall, our strategic application of three WGS technologies provided an in-depth analysis of the outbreak.
In gram-negative bacteria, bacterial communication or quorum sensing (QS) is achieved using common signaling molecules known as N-acyl homoserine lactones (AHL). We have previously reported the genome of AHL-producing bacterium, Enterobacter asburiae strain L1. In silico analysis of the strain L1 genome revealed the presence of a pair of luxI/R genes responsible for AHL-type QS, designated as easIR. In this work, the 639 bp luxI homolog, encoding 212 amino acids, have been cloned and overexpressed in Escherichia coli BL21 (DE3)pLysS. The purified protein (~25 kDa) shares high similarity to several members of the LuxI family among different E asburiae strains. Our findings showed that the heterologously expressed EasI protein has activated violacein production by AHL biosensor Chromobacterium violaceum CV026 as the wild-type E. asburiae. The mass spectrometry analysis showed the production of N-butanoyl homoserine lactone and N-hexanoyl homoserine lactone from induced E. coli harboring the recombinant EasI, suggesting that EasI is a functional AHL synthase. E. asburiae strain L1 was also shown to possess biofilm-forming characteristic activity using crystal violet binding assay. This is the first report on cloning and characterization of the luxI homolog from E. asburiae.