Displaying all 4 publications

Abstract:
Sort:
  1. Yeap JW, Ali IAH, Ibrahim B, Tan ML
    Pulm Pharmacol Ther, 2023 Aug;81:102218.
    PMID: 37201652 DOI: 10.1016/j.pupt.2023.102218
    COPD pathogenesis is frequently associated with endoplasmic reticulum stress (ER stress) progression. Targeting the major unfolded protein response (UPR) branches in the ER stress pathway may provide pharmacotherapeutic selection strategies for treating COPD and enable relief from its symptoms. In this study, we aimed to systematically review the potential role of the ER stress inhibitors of major UPR branches (IRE1, PERK, and ATF6) in COPD-related studies and determine the current stage of knowledge in this field. The systematic review was carried out adhering to the PRISMA checklist based on published studies obtained from specific keyword searches of three databases, namely PubMed, ScienceDirect and Springer Database. The search was limited to the year 2000-2022 which includes all in vitro studies, in vivo studies and clinical trials related to the application of ER stress inhibitors toward COPD-induced models and disease. The risk of bias was evaluated using the QUIN, SYRCLE, revised Cochrane risk of bias tool for randomized trials (RoB 2.0) and NIH tool respectively. A total of 7828 articles were screened from three databases and a final total of 37 studies were included in the review. The ER stress and UPR pathways are potentially useful to prevent COPD progression and attenuate the exacerbation of COPD and related symptoms. Interestingly, the off-target effects from inhibition of the UPR pathway may be desirable or undesirable depending on context and therapeutic applications. Targeting the UPR pathway could have complex consequences as the production of ER molecules involved in folding may be impaired which could continuously provoke misfolding of proteins. Although several emerging compounds were noted to be potentially useful for targeted therapy against COPD, clinical studies have yet to be thoroughly explored.
    Matched MeSH terms: eIF-2 Kinase*
  2. Yang B, Zhang R, Leong Bin Abdullah MFI
    Toxicol Lett, 2024 Jan;391:71-85.
    PMID: 38101493 DOI: 10.1016/j.toxlet.2023.12.008
    INTRODUCTION: This systematic review aimed to assess the association between neuropsychiatric effects of substance use and occurrence of ER stress and unfolded protein response (UPR) through comprehensive electronic search of existing literature and review of their findings.

    METHODS: A comprehensive electronic literature search was carried out on research articles published between 1950 to July 2023 through major databases, such as Scopus, Web of Science, Google Scholar, PubMed, PsycINFO, EMBASE, Medline and Cochrane Library.

    RESULTS: A total of 21 research articles were selected for review, which were comprised of sixteen animal studies, four human studies and one study on postmortem human brain samples. The selected studies revealed that alcohol, methamphetamine, cocaine, opioid and kratom exposures contributed to neuropsychiatric effects: such as decline in learning and memory function, executive dysfunction, alcohol, methamphetamine, opioid, and kratom dependence. These effects were associated with activation and persistent of ER stress and UPR with elevation of BiP and CHOP expression and the direction of ER stress is progressing towards the PERK-eIF2α-ATF4-CHOP pathway and neuronal apoptosis and neurodegeneration at various regions of the brain. In addition, regular kratom use in humans also contributed to elevation of p-JNK expression, denoting progress of ER stress towards the IRE1-ASK1-JNK-p-JNK pathway which was linked to kratom use disorder. However, treatment with certain compounds or biological agents could reverse the activation of ER stress.

    CONCLUSIONS: The neuropsychiatric effects of alcohol, methamphetamine, cocaine, opioid and kratom use may be associated with persistent ER stress and UPR.

    Matched MeSH terms: eIF-2 Kinase/metabolism
  3. Md Nesran ZN, Shafie NH, Ishak AH, Mohd Esa N, Ismail A, Md Tohid SF
    Biomed Res Int, 2019;2019:3480569.
    PMID: 31930117 DOI: 10.1155/2019/3480569
    Epigallocatechin-3-gallate (EGCG) is the most abundant bioactive polyphenolic compound among the green tea constituents and has been identified as a potential anticancer agent in colorectal cancer (CRC) studies. This study was aimed to determine the mechanism of actions of EGCG when targeting the endoplasmic reticulum (ER) stress pathway in CRC. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay was performed on HT-29 cell line and normal cell line (3T3) to determine the EGCG toxicity. Next, western blot was done to observe the expression of the related proteins for the ER stress pathway. The Caspase 3/7 assay was performed to determine the apoptosis induced by EGCG. The results demonstrated that EGCG treatment was toxic to the HT-29 cell line. EGCG induced ER stress in HT-29 by upregulating immunoglobulin-binding (BiP), PKR-like endoplasmic reticulum kinase (PERK), phosphorylation of eukaryotic initiation factor 2 alpha subunit (eIF2α), activating transcription 4 (ATF4), and inositol-requiring kinase 1 alpha (IRE1α). Apoptosis was induced in HT-29 cells after the EGCG treatment, as shown by the Caspase 3/7 activity. This study indicates that green tea EGCG has the potential to inhibit colorectal cancer cells through the induction of ER stress.
    Matched MeSH terms: eIF-2 Kinase/metabolism*
  4. Merlot AM, Shafie NH, Yu Y, Richardson V, Jansson PJ, Sahni S, et al.
    Biochem Pharmacol, 2016 06 01;109:27-47.
    PMID: 27059255 DOI: 10.1016/j.bcp.2016.04.001
    The endoplasmic reticulum (ER) plays a major role in the synthesis, maturation and folding of proteins and is a critical calcium (Ca(2+)) reservoir. Cellular stresses lead to an overwhelming accumulation of misfolded proteins in the ER, leading to ER stress and the activation of the unfolded protein response (UPR). In the stressful tumor microenvironment, the UPR maintains ER homeostasis and enables tumor survival. Thus, a novel strategy for cancer therapeutics is to overcome chronically activated ER stress by triggering pro-apoptotic pathways of the UPR. Considering this, the mechanisms by which the novel anti-cancer agent, Dp44mT, can target the ER stress response pathways were investigated in multiple cell-types. Our results demonstrate that the cytotoxic chelator, Dp44mT, which forms redox-active metal complexes, significantly: (1) increased ER stress-associated pro-apoptotic signaling molecules (i.e., p-eIF2α, ATF4, CHOP); (2) increased IRE1α phosphorylation (p-IRE1α) and XBP1 mRNA splicing; (3) reduced expression of ER stress-associated cell survival signaling molecules (e.g., XBP1s and p58(IPK)); (4) increased cleavage of the transcription factor, ATF6, which enhances expression of its downstream targets (i.e., CHOP and BiP); and (5) increased phosphorylation of CaMKII that induces apoptosis. In contrast to Dp44mT, the iron chelator, DFO, which forms redox-inactive iron complexes, did not affect BiP, p-IRE1α, XBP1 or p58(IPK) levels. This study highlights the ability of a novel cancer therapeutic (i.e., Dp44mT) to target the pro-apoptotic functions of the UPR via cellular metal sequestration and redox stress. Assessment of ER stress-mediated apoptosis is fundamental to the understanding of the pharmacology of chelation for cancer treatment.
    Matched MeSH terms: eIF-2 Kinase/genetics*; eIF-2 Kinase/metabolism
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links