Displaying all 4 publications

Abstract:
Sort:
  1. Suhaimi H, Ahmad FB, Friberg SE
    J Pharm Sci, 1995 Mar;84(3):376-80.
    PMID: 7616381
    A lamellar liquid crystalline region was identified in a typical skin lotion formulation system composed of a mixture of isostearic acid and triethanolamine (TEA) at 65:35 (w/w), decane, and water (the temperature was controlled at 30 degrees C). The interlayer spacings were determined by a small-angle X-ray diffraction technique. Incorporation of a natural dye, curcumin, resulted in lower interlayer spacings and higher penetration of water into the layered structure. However, the higher penetration of water was not apparent at all compositions of isostearic acid:TEA, decane, and water.
    Matched MeSH terms: Dermatologic Agents/chemistry*
  2. Sheikh KA, Baie SH, Khan GM
    Pak J Pharm Sci, 2005 Jan;18(1):1-5.
    PMID: 16431376
    Topical emulsions stabilized with non-ionic emulsifiers have been an attractive alternative as vehicles for drug delivery, particularly for the patients suffering from dermatological problems. Haruan (a natural wound healer) creams were formulated with different types of emulsifiers (Tween 80 and Span 80) using different grades of Malaysian Palm-oleins (DFPL 56, 60, 62 and 65). The stability (at room temperature and accelerated stability testing) of the various creams was evaluated at different temperatures (5, 25 and 45 degrees C) for a period of 6 months by measuring changes in droplet size, viscosity and percentage oil separation. The emulsifier type and concentration showed pronounced effect on the physicochemical properties of the cream, whereas storage time did not. This study suggested that the choice of emulsifiers and concentration of haruan extract are the most important factors in the stability of the haruan creams.
    Matched MeSH terms: Dermatologic Agents/chemistry*
  3. Goh SW, Jamil A, Safian N, Md Nor N, Muhammad N, Saharudin NL
    An Bras Dermatol, 2020 03 21;95(3):320-325.
    PMID: 32291095 DOI: 10.1016/j.abd.2019.11.007
    BACKGROUND: Higher skin pH in atopic dermatitis contributes to impaired epidermal barrier. A moisturizer compatible with physiological pH could improve atopic dermatitis.

    OBJECTIVE: To determine the effect of a physiologically compatible pH moisturizer in atopic dermatitis.

    METHODS: A randomized half body, double blind, controlled trial involving patients with stable atopic dermatitis was performed. pH-modified moisturizer and standard moisturizer were applied to half body for 6 weeks.

    RESULTS: A total of 6 (16.7%) males and 30 (83.3%) females participated. Skin pH reductions from week 0, week 2 and 6 were significant at the forearms (5.315 [0.98] to 4.85 [0.54] to 5.04 [0.78], p=0.02) and abdomen (5.25 [1.01], 4.82 [0.64], 5.01 [0.59], p=0.00) but not at the shins (5.01 [0.80], 4.76 [0.49], 4.85 [0.79], p=0.09) with pH-modified moisturizer. Transepidermal water loss (TEWL) at the forearms decreased (4.60 [2.55] to 3.70 [3.10] to 3.00 [3.55], p=0.00), abdomen (3.90 [2.90] to 2.40 [3.45] to 2.70 [2.25], p=0.046). SCORAD improved from 14.1±12.75 to 10.5±13.25 to 7±12.25, p=0.00. In standard moisturizer group, pH reductions were significant at the forearms (5.29 [0.94] to 4.84 [0.55] to 5.02 [0.70], p=0.00) and abdomen (5.25 [1.09], 4.91 [0.63], 5.12 [0.66], p=0.00). TEWL at the forearm were (4.80 [2.95], 4.10 [2.15], 4.60 [3.40], p=0.67), shins (3.80 [1.40], 3.50 [2.35], 4.00 [2.50], p=0.91) and abdomen (3.70 [2.45], 4.10 [3.60], 3.40 [2.95], p=0.80). SCORAD improved from 14.2±9.1 to 10.9±10.65 to 10.5±11, p=0.00. Reduction in pH was observed with both moisturizers while TEWL significantly improved with pH-modified moisturizer. pH-modified moisturizer resulted in greater pH, TEWL and SCORAD improvements however the differences were not significant from standard moisturizer.

    STUDY LIMITATION: Skin hydration was not evaluated.

    CONCLUSION: Moisturization is beneficial for atopic dermatitis; use of physiologically compatible pH moisturizer is promising.

    Matched MeSH terms: Dermatologic Agents/chemistry*
  4. Rapalli VK, Singhvi G, Dubey SK, Gupta G, Chellappan DK, Dua K
    Biomed Pharmacother, 2018 Oct;106:707-713.
    PMID: 29990862 DOI: 10.1016/j.biopha.2018.06.136
    Psoriasis is a chronic autoimmune skin disorder affecting 2-3% of the world population. It has characteristic features such as increased keratinocyte proliferation and production of inflammatory mediators. The treatment involves various strategies including topical, systemic, phototherapy and biologics. Topical therapies are preferred for mild to moderate psoriasis conditions over the systemic therapies which are ideal in severe disease conditions. The systemic therapies include immunosuppressants, biological agents and recently approved phosphodiesterase-4 (PDE4) inhibitors. There are various limitations associated with the existing therapies where the new findings in the pathogenesis of psoriasis are paving a path for newer therapeutics to target at the molecular level. Various small molecules, PDE-4 inhibitors, biologics, and immunomodulator proved efficacious including the new molecules targeting Janus kinases (JAK) inhibitors that are under investigation. Furthermore, the role of genetic and miRNAs in psoriasis is still not completely explored and may further help in improving the treatment efficacy. This review provides an insight into various emerging therapies along with currently approved treatments for psoriasis.
    Matched MeSH terms: Dermatologic Agents/chemistry
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links