Displaying all 5 publications

Abstract:
Sort:
  1. Barahuie F, Hussein MZ, Fakurazi S, Zainal Z
    Int J Mol Sci, 2014;15(5):7750-86.
    PMID: 24802876 DOI: 10.3390/ijms15057750
    Layered hydroxides (LHs) have recently fascinated researchers due to their wide application in various fields. These inorganic nanoparticles, with excellent features as nanocarriers in drug delivery systems, have the potential to play an important role in healthcare. Owing to their outstanding ion-exchange capacity, many organic pharmaceutical drugs have been intercalated into the interlayer galleries of LHs and, consequently, novel nanodrugs or smart drugs may revolutionize in the treatment of diseases. Layered hydroxides, as green nanoreservoirs with sustained drug release and cell targeting properties hold great promise of improving health and prolonging life.
    Matched MeSH terms: Delayed-Action Preparations/toxicity
  2. Salam NA, Naeem MA, Malik NS, Riaz M, Shahiq-Uz-Zaman -, Masood-Ur-Rehman -, et al.
    Pak J Pharm Sci, 2020 Jan;33(1(Supplementary)):269-279.
    PMID: 32122858
    The main objective of the present study was to explore the potential of matrix tablets as extended release dosage form of tianeptine, using HMPC K100 as a polymer. HPMC K100 extended the release of the drug from formulation due to the gel-like structure. Direct compression method was adopted to compress the tablets using different concentrations of polymer. Tablets were evaluated for pre-compression and post-compression parameters. Drug release study showed that tablet extends the release of drug with the increasing concentration of polymer. Drug, polymers and tablets were analyzed and/or characterized for compatibility, degradation, thermal stability, amorphous or crystalline nature via FTIR, DSC, TGA, XRD studies. SEM study predicted that tablets had a uniform structure. HPMC K100 based tablets were similar to that of the reference product. Acute toxicity study conducted on Swiss albino mice showed that matrix tablets were safe and non-toxic, as no changes in physical activity and functions of organs were observed. Biochemical and histopathological study revealed lack of any kind of abnormality in liver and renal function. Moreover, necrotic changes were absent at organ level.
    Matched MeSH terms: Delayed-Action Preparations/toxicity
  3. Barahuie F, Hussein MZ, Abd Gani S, Fakurazi S, Zainal Z
    Int J Nanomedicine, 2014;9:3137-49.
    PMID: 25061291 DOI: 10.2147/IJN.S59541
    BACKGROUND: We characterize a novel nanocomposite that acts as an efficient anticancer agent.

    METHODS: This nanocomposite consists of zinc layered hydroxide intercalated with protocatechuate (an anionic form of protocatechuic acid), that has been synthesized using a direct method with zinc oxide and protocatechuic acid as precursors.

    RESULTS: The resulting protocatechuic acid nanocomposite (PAN) showed a basal spacing of 12.7 Å, indicating that protocatechuate was intercalated in a monolayer arrangement, with an angle of 54° from the Z-axis between the interlayers of the zinc layered hydroxide, and an estimated drug loading of about 35.7%. PAN exhibited the properties of a mesoporous type material, with greatly enhanced thermal stability of protocatechuate as compared to its free counterpart. The presence of protocatechuate in the interlayers of the zinc layered hydroxide was further supported by Fourier transform infrared spectroscopy. Protocatechuate was released from PAN in a slow and sustained manner. This mechanism of release was well represented by a pseudo-second order kinetics model. PAN has shown increased cytotoxicity compared to the free form of protocatechuic acid in all cancer cell lines tested. Tumor growth suppression was extensive, particularly in HepG2 and HT29 cell lines.

    CONCLUSION: PAN is suitable for use as a controlled release formulation, and our in vitro evidence indicates that PAN is an effective anticancer agent. PAN may have potential as a chemotherapeutic drug for human cancer.

    Matched MeSH terms: Delayed-Action Preparations/toxicity
  4. Dorniani D, Kura AU, Hussein-Al-Ali SH, Bin Hussein MZ, Fakurazi S, Shaari AH, et al.
    ScientificWorldJournal, 2014;2014:416354.
    PMID: 24737969 DOI: 10.1155/2014/416354
    The efficacy of two nanocarriers polyethylene glycol and polyvinyl alcohol magnetic nanoparticles coated with gallic acid (GA) was accomplished via X-ray diffraction, infrared spectroscopy, magnetic measurements, thermal analysis, and TEM. X-ray diffraction and TEM results showed that Fe3O4 nanoparticles were pure iron oxide having spherical shape with the average diameter of 9 nm, compared with 31 nm and 35 nm after coating with polyethylene glycol-GA (FPEGG) and polyvinyl alcohol-GA (FPVAG), respectively. Thermogravimetric analyses proved that after coating the thermal stability was markedly enhanced. Magnetic measurements and Fourier transform infrared (FTIR) revealed that superparamagnetic iron oxide nanoparticles could be successfully coated with two polymers (PEG and PVA) and gallic acid as an active drug. Release behavior of gallic acid from two nanocomposites showed that FPEGG and FPVAG nanocomposites were found to be sustained and governed by pseudo-second-order kinetics. Anticancer activity of the two nanocomposites shows that the FPEGG demonstrated higher anticancer effect on the breast cancer cell lines in almost all concentrations tested compared to FPVAG.
    Matched MeSH terms: Delayed-Action Preparations/toxicity
  5. Dorniani D, Hussein MZ, Kura AU, Fakurazi S, Shaari AH, Ahmad Z
    Int J Nanomedicine, 2012;7:5745-56.
    PMID: 23166439 DOI: 10.2147/IJN.S35746
    Magnetic iron oxide nanoparticles were prepared using a sonochemical method under atmospheric conditions at a Fe²⁺ to Fe³⁺ molar ratio of 1:2. The iron oxide nanoparticles were subsequently coated with chitosan and gallic acid to produce a core-shell structure.
    Matched MeSH terms: Delayed-Action Preparations/toxicity
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links