Displaying all 5 publications

Abstract:
Sort:
  1. Shahid M, Azfaralariff A, Tufail M, Hussain Khan N, Abdulkareem Najm A, Firasat S, et al.
    PeerJ, 2022;10:e14132.
    PMID: 36518267 DOI: 10.7717/peerj.14132
    BACKGROUND: Primary congenital glaucoma (PCG) is the most common subtype of glaucoma caused by defects in the cytochrome P450 1B1 (CYP1B1) gene. It is developing among infants in more than 80% of cases who exhibit impairments in the anterior chamber angle and the trabecular meshwork. Thus, a comprehensive in silico approach was performed to evaluate the effect of high-risk deleterious missense variations in the CYP1B1 gene.

    MATERIAL AND METHODS: All the information for CYP1B1 missense variants was retrieved from the dbSNP database. Seven different tools, namely: SIFT, PolyPhen-2, PROVEAN, SNAP2, PANTHER, PhD-SNP, and Predict-SNP, were used for functional annotation, and two packages, which were I-Mutant 2.0 and MUpro, were used to predict the effect of the variants on protein stability. A phylogenetic conservation analysis using deleterious variants was performed by the ConSurf server. The 3D structures of the wild-type and mutants were generated using the I-TASSER tool, and a 50 ns molecular dynamic simulation (MDS) was executed using the GROMACS webserver to determine the stability of mutants compared to the native protein. Co-expression, protein-protein interaction (PPI), gene ontology (GO), and pathway analyses were additionally performed for the CYP1B1 in-depth study.

    RESULTS: All the retrieved data from the dbSNP database was subjected to functional, structural, and phylogenetic analysis. From the conducted analyses, a total of 19 high-risk variants (P52L, G61E, G90R, P118L, E173K, D291G, Y349D, G365W, G365R, R368H, R368C, D374N, N423Y, D430E, P442A, R444Q, F445L, R469W, and C470Y) were screened out that were considered to be deleterious to the CYP1B1 gene. The phylogenetic analysis revealed that the majority of the variants occurred in highly conserved regions. The MD simulation analysis exhibited that all mutants' average root mean square deviation (RMSD) values were higher compared to the wild-type protein, which could potentially cause CYP1B1 protein dysfunction, leading to the severity of the disease. Moreover, it has been discovered that CYP1A1, VCAN, HSD17B1, HSD17B2, and AKR1C3 are highly co-expressed and interact with CYP1B1. Besides, the CYP1B1 protein is primarily involved in the metabolism of xenobiotics, chemical carcinogenesis, the retinal metabolic process, and steroid hormone biosynthesis pathways, demonstrating its multifaceted and important roles.

    DISCUSSION: This is the first comprehensive study that adds essential information to the ongoing efforts to understand the crucial role of genetic signatures in the development of PCG and will be useful for more targeted gene-disease association studies.

    Matched MeSH terms: Cytochrome P-450 CYP1B1/genetics
  2. Ma A, Yousoof S, Grigg JR, Flaherty M, Minoche AE, Cowley MJ, et al.
    Genet Med, 2020 10;22(10):1623-1632.
    PMID: 32499604 DOI: 10.1038/s41436-020-0854-x
    PURPOSE: Ocular anterior segment disorders (ASDs) are clinically and genetically heterogeneous, and genetic diagnosis often remains elusive. In this study, we demonstrate the value of a combined analysis protocol using phenotypic, genomic, and pedigree structure data to achieve a genetic conclusion.

    METHODS: We utilized a combination of chromosome microarray, exome sequencing, and genome sequencing with structural variant and trio analysis to investigate a cohort of 41 predominantly sporadic cases.

    RESULTS: We identified likely causative variants in 54% (22/41) of cases, including 51% (19/37) of sporadic cases and 75% (3/4) of cases initially referred as familial ASD. Two-thirds of sporadic cases were found to have heterozygous variants, which in most cases were de novo. Approximately one-third (7/22) of genetic diagnoses were found in rarely reported or recently identified ASD genes including PXDN, GJA8, COL4A1, ITPR1, CPAMD8, as well as the new phenotypic association of Axenfeld-Rieger anomaly with a homozygous ADAMTS17 variant. The remainder of the variants were in key ASD genes including FOXC1, PITX2, CYP1B1, FOXE3, and PAX6.

    CONCLUSIONS: We demonstrate the benefit of detailed phenotypic, genomic, variant, and segregation analysis to uncover some of the previously "hidden" heritable answers in several rarely reported and newly identified ocular ASD-related disease genes.

    Matched MeSH terms: Cytochrome P-450 CYP1B1/genetics
  3. Khor CY, Khoo BY
    Biotechnol Lett, 2020 Aug;42(8):1581-1595.
    PMID: 32385743 DOI: 10.1007/s10529-020-02904-2
    OBJECTIVE: This study aimed to examine the metabolising effect of chrysin by investigating the mRNA expression levels of PPARα and its related cellular mechanisms in HCT116 cells.

    RESULTS: The mRNA expression of PPARα was significantly induced in HCT116 cells following treatment with chrysin for 36 h, but the mRNA expression of PPARα was inhibited, when the cells were treated with a combination of chrysin and MK886 (PPARα inhibitor). This phenomenon proved that the incorporation of MK886 lowers the expression levels of PPARα, thus enabling us to study the function of PPARα. The cell population of the G0/G1 phase significantly increased in chrysin-treated cells, which was accompanied by a decrease in the percentage of S phase cell population after 12 h of treatment. However, treatments of HCT116 cells with chrysin only or a combination of chrysin and MK886 did not show the opposite situation in the G0/G1 and S phase cell populations, indicating that the expression of PPARα may not be associated with the cell cycle in the treated cells. The migration rate in chrysin-treated HCT116 cells was reduced significantly after 24 and 36 h of treatments. However, the activity was revived, when the expression of PPARα was inhibited, indicating that the migration activity of chrysin-treated cells is likely correlated with the expression of PPARα. Comparison of the CYP2S1 and CYP1B1 mRNA expression in chrysin only treated, and a combination of chrysin and MK886-treated HCT116 cells for 24 and 36 h showed a significant difference in the expression levels, indicating that PPARα inhibitor could also modify the expression of CYP2S1 and CYP1B1.

    CONCLUSION: The study indicates that PPARα may play an essential role in regulating the migration activity, and the expression of CYP2S1 and CYP1B1 in chrysin-treated colorectal cancer cells.

    Matched MeSH terms: Cytochrome P-450 CYP1B1/analysis; Cytochrome P-450 CYP1B1/genetics; Cytochrome P-450 CYP1B1/metabolism*
  4. Abdul Aziz AA, Md Salleh MS, Mohamad I, Krishna Bhavaraju VM, Mazuwin Yahya M, Zakaria AD, et al.
    J Genet, 2018 Dec;97(5):1185-1194.
    PMID: 30555068
    Triple negative breast cancer (TNBC) is typically associated with poor and interindividual variability in treatment response. Cytochrome P450 family 1 subfamily B1 (CYP1B1) is a metabolizing enzyme, involved in the biotransformation of xenobiotics and anticancer drugs. We hypothesized that, single-nucleotide polymorphisms (SNPs), CYP1B1 142 C>G, 4326 C>G and 4360 A>G, and CYP1B1 mRNA expression might be potential biomarkers for prediction of treatment response in TNBC patients. CYP1B1 SNPs genotyping (76 TNBC patients) was performed using allele-specific polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism methods and mRNA expression of CYP1B1 (41 formalin-fixed paraffin embeddedblocks) was quantified using quantitative reverse transcription PCR. Homozygous variant genotype (GG) and variant allele (G) of CYP1B1 4326C>G polymorphism showed significantly higher risk for development of resistance to chemotherapy with adjusted odds ratio (OR): 6.802 and 3.010, respectively. Whereas, CYP1B1 142 CG heterozygous genotype showed significant association with goodtreatment response with adjusted OR: 0.199. CYP1B1 142C-4326G haplotype was associated with higher risk for chemoresistance with OR: 2.579. Expression analysis revealed that the relative expression of CYP1B1 was downregulated (0.592) in cancerous tissue compared with normal adjacent tissues. When analysed for association with chemotherapy response, CYP1B1 expression was found to be significantly upregulated (3.256) in cancerous tissues of patients who did not respond as opposed to those of patients who showed response to chemotherapy. Our findings suggest that SNPs together with mRNA expression of CYP1B1 may be useful biomarkers to predict chemotherapy response in TNBC patients.
    Matched MeSH terms: Cytochrome P-450 CYP1B1/genetics*
  5. Abdul Aziz AA, Md Salleh MS, Yahya MM, Zakaria AD, Ankathil R
    Asian Pac J Cancer Prev, 2021 Apr 01;22(4):1319-1324.
    PMID: 33906328 DOI: 10.31557/APJCP.2021.22.4.1319
    BACKGROUND: Triple negative breast cancer (TNBC) which is treated with taxane, adriamycin and cyclophosphamide (TAC) chemotherapy regimen show variation in treatment response. CYP1B1 4326 C>G polymorphism has been implicated in contributing to the differences in treatment response in various types of cancers.

    AIM: The objective of the present study was to investigate whether this polymorphism modulate the risk of disease recurrence in TNBC patients undergoing TAC chemotherapy regimen.

    METHODS: Blood samples of 76 immunohistochemistry confirmed TNBC patients were recruited. The genotyping of CYP1B1 4326 C>G polymorphism was carried out using PCR-RFLP technique. The genotype patterns were categorized into homozygous wildtype, heterozygous and homozygous variant. Kaplan-Meier analysis followed by Cox proportional hazard regression model were performed to evaluate the TNBC patients' recurrence risk.

    RESULTS: Out of 76 TNBC patients, 25 (33.0%) showed disease recurrence after one-year evaluation. Kaplan Meier analysis showed that TNBC patients who are carriers of CYP1B1 4326 GG variant genotypes (37.0%) had a significantly lower probability of disease-free rates as compared to TNBC patients who are carriers of CYP1B1 4326 CC/CG genotypes (71.0%). Univariate and multivariate Cox analysis demonstrated that TNBC patients who carried CYP1B1 4326 GG variant genotype had a significantly higher risk of recurrence with HR: 2.50 and HR: 4.18 respectively, even after adjustment as compared to TNBC patients who were carriers of CYP1B1 4326 CC and CG genotypes.

    CONCLUSION: Our results demonstrate the potential use of CYP1B1 4325 GG variant genotype as a candidate biomarker in predicting risk of recurrence in TNBC patients undergoing TAC chemotherapy regimen.

    Matched MeSH terms: Cytochrome P-450 CYP1B1/genetics*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links