Displaying all 15 publications

Abstract:
Sort:
  1. Ismail N', Abdullah SRS, Idris M, Kurniawan SB, Effendi Halmi MI, Al Sbani NH, et al.
    J Environ Manage, 2020 Aug 01;267:110643.
    PMID: 32421674 DOI: 10.1016/j.jenvman.2020.110643
    Pilot-scale constructed wetlands planted with Scirpus grossus, were used to investigate the effects of applying a three-rhizobacterial consortium (Bacillus cereus strain NII, Bacillus subtilis strain NII and Brevibacterium sp. strain NII) on the growth of S. grossus and also on the accumulation of iron (Fe) and aluminium (Al) in S. grossus. The experiment includes constructed wetlands with the addition of 2% of the consortium rhizobacteria and without the consortium rhizobacteria addition (acting as control). During each sampling day (0, 5, 10, 15, 20, 25, 30, 42, 72 and 102), plant height, concentration of Fe and Al and sand microbial community were investigated. The results for the constructed wetland with the addition of consortium rhizobacteria showed the growth of S. grossus increased significantly at 26% and 29% for plant height and dry weight, respectively. While the accumulation of Fe and Al in S. grossus were enhanced about 48% and 19% respectively. To conclude, the addition of the rhizobacteria consortium has enhanced both the growth of S. grossus and the metal accumulation. These results suggesting that rhizobacteria has good potential to restore Fe and Al contaminated water in general and particularly for mining wastewater.
    Matched MeSH terms: Cyperaceae*
  2. Barrett RL
    Ann Bot, 2013 Apr;111(4):499-529.
    PMID: 23378523 DOI: 10.1093/aob/mct008
    BACKGROUND: Sedges (Cyperaceae) form an important ecological component of many ecosystems around the world. Sword and rapier sedges (genus Lepidosperma) are common and widespread components of the southern Australian and New Zealand floras, also occurring in New Caledonia, West Papua, Borneo, Malaysia and southern China. Sedge ecology is seldom studied and no comprehensive review of sedge ecology exists. Lepidosperma is unusual in the Cyperaceae with the majority of species occurring in dryland habitats.

    SCOPE: Extensive review of ecological literature and field observations shows Lepidosperma species to be important components of many ecosystems, often dominating understorey and sedge-rich communities. For the first time, a detailed ecological review of a Cyperaceae genus is presented.

    CONCLUSIONS: Lepidosperma species are long-lived perennials with significant abundance and persistence in the landscape. Speciation patterns in the genus are of considerable interest due to complex biogeographical patterns and a high degree of habitat specificity. Potential benefits exist for medicinal products identified from several Lepidosperma species. Over 178 organisms, including 26 mammals, 42 birds, six reptiles, five amphibians, eight arachnids, 75 insects, three crustaceans and 13 fungi, are found to be dependent on, or making use of, Lepidosperma species. A significant relationship exists between Lepidosperma species and the moth genus Elachista. Implications for the conservation and ecology of both sedges and associated species are discussed.

    Matched MeSH terms: Cyperaceae/classification*; Cyperaceae/physiology*
  3. Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M
    Chemosphere, 2022 Mar;291(Pt 3):132952.
    PMID: 34798103 DOI: 10.1016/j.chemosphere.2021.132952
    Lead (Pb) is one of the toxic heavy metals that pollute the environment as a result of industrial activities. This study aims to optimize Pb removal from water by using horizontal free surface flow constructed wetland (HFSFCW) planted with Scirpus grossus. Optimization was conducted using response surface methodology (RSM) under Box-Behnken design with the operational parameters of initial Pb concentration, retention time, and aeration. Optimization results showed that 37 mg/L of initial Pb concentration, 32 days of retention time, and no aeration were the optimum conditions for Pb removal by using the systems. Validation test was run under two different conditions, namely, non-bioaugmented and bioaugmented with rhizobacteria (Bacillus cereus, B. pumilus, B. subtilis, Brevibacillus choshinensis, and Rhodococcus rhodochrous). Results of the validation test showed that Pb removal in water achieved 99.99% efficiency with 0.2% error from the RSM prediction, while the adsorption of Pb by plants reached 5160.18 mg/kg with 10.6% error from the RSM prediction. The bioaugmentation of the five rhizobacterial species showed a slight improvement in Pb removal from water and Pb adsorption by plants. However, no significant improvement was achieved (p 
    Matched MeSH terms: Cyperaceae*
  4. Almaamary EAS, Abdullah SRS, Ismail N', Idris M, Kurniawan SB, Imron MF
    J Environ Manage, 2022 Apr 01;307:114534.
    PMID: 35065382 DOI: 10.1016/j.jenvman.2022.114534
    Dye is one of the pollutants found in water bodies because of the increased growth of the textile industry. In this study, Scirpus grossus was planted inside a constructed wetland to treat mixed dye (methylene blue and methyl orange)-containing wastewater under batch and continuous modes. The plants were exposed to various concentrations (0, 50, 75, and 100 mg/L) of mixed dye for 72 days (with hydraulic retention time of 7 days for the continuous system). Biological oxygen demand, chemical oxygen demand, total organic carbon, pH, temperature, ionic content, and plant growth parameters were measured. Results showed that S. grossus can withstand all the tested dye concentrations until the end of the treatment period. Color removal efficiencies of 86, 84, and 75% were obtained in batch mode, whereas 90%, 85%, and 79% were obtained in continuous mode for 50, 75, and 100 mg/L dye concentrations, respectively. Fourier-transform infrared analysis confirmed the transformation of dye compounds after treatment and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy analysis showed that most of the intermediate compounds were not absorbed into plants but adsorbed onto the surface of the root structure.
    Matched MeSH terms: Cyperaceae*
  5. Al-Baldawi IA, Abdullah SR, Anuar N, Suja F, Idris M
    J Hazard Mater, 2013 May 15;252-253:64-9.
    PMID: 23500791 DOI: 10.1016/j.jhazmat.2013.01.067
    In this study, bulrush (Scirpus grossus) was subjected to a 72 day phytotoxicity test to assess its ability to phytoremediate diesel contamination in simulated wastewater at different concentrations (0, 8700, 17,400 and 26,100mg/L). Diesel degradation by S. grossus was measured in terms of total petroleum hydrocarbon (TPH-D). The TPH-D concentration in the synthetic wastewater was determined with the liquid-liquid extraction method and gas chromatography. S. grossus was found to reduce TPH-D by 70.0 and 80.2% for concentrations of 8700 mg/L and 17,400mg/L, respectively. At a diesel concentration of 26,100mg/L, S. grossus died after 14 days. Additionally, the biomass of S. grossus plants was found to increase throughout the phytotoxicity test, confirming the ability of the plant to survive in water contaminated with diesel at rates of less than 17,400mg/L.
    Matched MeSH terms: Cyperaceae/drug effects*; Cyperaceae/growth & development; Cyperaceae/metabolism
  6. Al-Baldawi IA, Sheikh Abdullah SR, Abu Hasan H, Suja F, Anuar N, Mushrifah I
    J Environ Manage, 2014 Jul 1;140:152-9.
    PMID: 24762527 DOI: 10.1016/j.jenvman.2014.03.007
    This study investigated the optimum conditions for total petroleum hydrocarbon (TPH) removal from diesel-contaminated water using phytoremediation treatment with Scirpus grossus. In addition, TPH removal from sand was adopted as a second response. The optimum conditions for maximum TPH removal were determined through a Box-Behnken Design. Three operational variables, i.e. diesel concentration (0.1, 0.175, 0.25% Vdiesel/Vwater), aeration rate (0, 1 and 2 L/min) and retention time (14, 43 and 72 days), were investigated by setting TPH removal and diesel concentration as the maximum, retention time within the given range, and aeration rate as the minimum. The optimum conditions were found to be a diesel concentration of 0.25% (Vdiesel/Vwater), a retention time of 63 days and no aeration with an estimated maximum TPH removal from water and sand of 76.3 and 56.5%, respectively. From a validation test of the optimum conditions, it was found that the maximum TPH removal from contaminated water and sand was 72.5 and 59%, respectively, which was a 5 and 4.4% deviation from the values given by the Box-Behnken Design, providing evidence that S. grossus is a Malaysian native plant that can be used to remediate wastewater containing hydrocarbons.
    Matched MeSH terms: Cyperaceae/metabolism*
  7. Al-Baldawi IA, Sheikh Abdullah SR, Anuar N, Suja F, Idris M
    Water Sci Technol, 2013;68(10):2271-8.
    PMID: 24292478 DOI: 10.2166/wst.2013.484
    One of the appropriate development technology options for the treatment of wastewater contaminated with diesel is constructed wetlands (CWs). Throughout 72 days of exposure, sampling was carried out for monitoring of physical parameters, plant growth and the efficiency of total petroleum hydrocarbon (TPH) removal, as an indication for diesel contamination, to assess the pilot-scale performance. Four pilot CWs with a horizontal sub-surface flow system were applied using the bulrush of Scirpus grossus. The CWs were loaded with different diesel concentrations of 0, 0.1, 0.2 and 0.25% (Vdiesel/Vwater). The TPH removal efficiencies were 82, 71, and 67% at the end of 72 days for diesel concentrations of 0.1, 0.2, and 0.25% respectively. In addition, the high removal efficiency of total suspended solids and chemical oxygen demand (COD) were 100 and 75.4% respectively, for a diesel concentration of 0.1%. It was concluded that S. grossus is a potential plant that can be used in a well-operated CW for restoring 0.1% diesel-contaminated water.
    Matched MeSH terms: Cyperaceae*
  8. Al-Baldawi IA, Abdullah SR, Suja F, Anuar N, Mushrifah I
    J Environ Manage, 2013 Nov 30;130:324-30.
    PMID: 24113536 DOI: 10.1016/j.jenvman.2013.09.010
    Two types of flow system, free surface flow (FSF) and sub-surface flow (SSF), were examined to select a better way to remove total petroleum hydrocarbons (TPH) using diesel as a hydrocarbon model in a phytotoxicity test to Scirpus grossus. The removal efficiencies of TPH for the two flow systems were compared. Several wastewater parameters, including temperature (T, °C), dissolved oxygen (DO, mgL(-1)), oxidation-reduction potential (ORP, mV), and pH were recorded during the experimental runs. In addition, overall plant lengths, wet weights, and dry weights were also monitored. The phytotoxicity test using the bulrush plant S. grossus was run for 72 days with different diesel concentrations (1%, 2%, and 3%) (Vdiesel/Vwater). A comparison between the two flow systems showed that the SSF system was more efficient than the FSF system in removing TPH from the synthetic wastewater, with average removal efficiencies of 91.5% and 80.2%, respectively. The SSF system was able to tolerate higher diesel concentrations than was the FSF system.
    Matched MeSH terms: Cyperaceae/metabolism*
  9. Strout G, Russell SD, Pulsifer DP, Erten S, Lakhtakia A, Lee DW
    Ann Bot, 2013 Oct;112(6):1141-8.
    PMID: 23960046 DOI: 10.1093/aob/mct172
    BACKGROUND AND AIMS: Blue-green iridescence in the tropical rainforest understorey sedge Mapania caudata creates structural coloration in its leaves through a novel photonic mechanism. Known structures in plants producing iridescent blues consist of altered cellulose layering within cell walls and in special bodies, and thylakoid membranes in specialized plastids. This study was undertaken in order to determine the origin of leaf iridescence in this plant with particular attention to nano-scale components contributing to this coloration.

    METHODS: Adaxial walls of leaf epidermal cells were characterized using high-pressure-frozen freeze-substituted specimens, which retain their native dimensions during observations using transmission and scanning microscopy, accompanied by energy-dispersive X-ray spectroscopy to identify the role of biogenic silica in wall-based iridescence. Biogenic silica was experimentally removed using aqueous Na2CO3 and optical properties were compared using spectral reflectance.

    KEY RESULTS AND CONCLUSIONS: Blue iridescence is produced in the adaxial epidermal cell wall, which contains helicoid lamellae. The blue iridescence from cell surfaces is left-circularly polarized. The position of the silica granules is entrained by the helicoid microfibrillar layers, and granules accumulate at a uniform position within the helicoids, contributing to the structure that produces the blue iridescence, as part of the unit cell responsible for 2 ° Bragg scatter. Removal of silica from the walls eliminated the blue colour. Addition of silica nanoparticles on existing cellulosic lamellae is a novel mechanism for adding structural colour in organisms.

    Matched MeSH terms: Cyperaceae/metabolism; Cyperaceae/ultrastructure; Cyperaceae/chemistry*
  10. Zin NM, Sarmin NI, Ghadin N, Basri DF, Sidik NM, Hess WM, et al.
    FEMS Microbiol Lett, 2007 Sep;274(1):83-8.
    PMID: 17608698
    Three novel endophytic streptomycetes have been isolated and characterized from plants with ethnobotanical uses on the Malay Peninsula including: Thottea grandiflora (family -Aristolochiaceae), Polyalthia spp. (family -Annonaceae), and Mapania sp. (family -Cyperaceae). Each isolate, as studied by scanning electron microscopy, has small hyphae, and produces typical barrel-shaped spores arising by hyphal fragmentation. Interestingly, although none has any detectable antibacterial killing properties, each has demonstrable killing activity against one or more pathogenic fungi including organisms such as Phytophthora erythroseptica, Pythium ultimum, Sclerotinia sclerotiorum, Mycosphaerella fijiensis and Rhizoctonia solani. Molecular biological studies on the rRNA gene sequence of each isolate revealed that it is distinct from all other genetic accessions of streptomyectes in GenBank, and each bears some genetic similarity to other streptomycetes. The bioactivity of each microbe was extractable in various organic solvents.
    Matched MeSH terms: Cyperaceae/classification; Cyperaceae/microbiology*
  11. Hui-hui Wang, Jing-lan Liu, Rong Zhang, Jia-kai Liu, Yu-qi Zou, Zhen-ming Zhang
    Sains Malaysiana, 2017;46:2375-2381.
    This paper had selected watermifoil (Myriophyllum veticillatum Linn.), softstem bulrush (Scirpus validus Vahl) and yellow-flowered iris (Iris wilsonii), in showing the water purification through different configuration. AFIs with different combination of aquatic plants were set up to purify the water quality for 50 days. This paper aimed to evaluate chemical and vegetative characteristics of each type of plant and also to find configuration of aquatic plants to maximize the contaminants removal efficiency by artificial floating island (AFI). The result indicated that the trophic waterbody promote the growth of plants and all of the AFIs have the ability to purify water and reduce contaminants. However, the most effective way is by combination of these three aquatic plants which has strong capacity to remove COD, NO3-, total nitrogen, total phosphorous and improve pH levels. Watermifoil (Myriophyllum verticillatum Linn.) is better than yellow-flowered iris (Iris wilsonii) and softstem bulrush (Scirpus validus Vahl) in disposing water pollutants.
    Matched MeSH terms: Cyperaceae
  12. Sharuddin SSN, Abdullah SRS, Hasan HA, Othman AR, Ismail N'
    Sci Total Environ, 2024 Dec 01;954:176189.
    PMID: 39277001 DOI: 10.1016/j.scitotenv.2024.176189
    Almost over ten years, environmental experts have concentrated on implementing risk-based management strategies for the remediation of sites contaminated with total petroleum hydrocarbons (TPHs), which can potentially have detrimental ecological impacts. Phytoremediation widely recognized as a green technology a plant-based and economically efficient technology, emerges as a promising method to offer an alternative to existing treatment technologies in TPH contaminated ecosystems. The utilization of Scirpus grossus, a perennial plant, has been proposed as a practical, safe, and cost-effective method for remediating soil contaminated with petroleum hydrocarbons. This study aimed to evaluate the efficacy of S. grossus in removing total petroleum hydrocarbons (TPH) in real crude-oil sludge. Employing a batch phytoremediation system with S. grossus, the experiment was conducted in crates within a greenhouse, maintaining ambient temperatures (30 °C-35 °C) for a duration of 28 days. Each crate was populated with 9-month-old plants of uniform size, initially cultivated in the greenhouse before being transplanted into crates containing 100 % crude-oil sludge with an initial TPH concentration of 37,554 mg/kg for the treatment phase. TPH removal rates were assessed after 14, 21, and 28 days of exposure, resulting in removal rates of 67 %, 74 %, and 75 %, respectively. The highest concentration of rhizobacteria recorded in both sample (with contaminants and without contaminants) were 5.56 × 104 and 5.72 × 104 CFU/mL respectively. Furthermore, TPH extraction from both stems and roots of S. grossus was analysed, revealing the highest TPH concentration of 15,319 mg/kg and about 8000 mg/kg of TPH at day 28 by roots and stem sample respectively. In conclusion, S. grossus demonstrated substantial potential in effectively mitigating the toxicity of TPH in real crude-oil sludge contamination scenarios.
    Matched MeSH terms: Cyperaceae
  13. Tangahu BV, Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M
    Int J Phytoremediation, 2013;15(7):663-76.
    PMID: 23819266
    Phytoremediation is a technology to clean the environment from heavy metals contamination. The objectives of this study are to threat Pb contaminated wastewater by using phytoremediation technology and to determine if the plant can be mention as hyperaccumulator. Fifty plants of Scirpus grossus were grown in sand medium and 600 L spiked water in various Pb concentration (10, 30 and 50 mg/L) was exposed. The experiment was conducted with single exposure method, sampling time on day-1, day-14, day-28, day-42, day-70, and day-98. The analysis of Pb concentration in water, sand medium and inside the plant tissue was conducted by ICP-OES. Water samples were filtered and Pb concentration were directly analyzed, Pb in sand samples were extracted by EDTA method before analyzed, and Pb in plant tissues were extracted by wet digestion method and analyzed. The results showed that on day-28, Pb concentration in water decreased 100%, 99.9%, 99.7%, and the highest Pb uptake by plant were 1343, 4909, 3236 mg/kg for the treatment of 10, 30, and 50 mg/L respectively. The highest BC and TF were 485,261 on day-42 and 2.5295 on day-70 of treatment 30 mg/L, it can be mentioned that Scirpus grossus is a hyperaccumulator.
    Matched MeSH terms: Cyperaceae/metabolism*
  14. Tangahu BV, Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M
    Int J Phytoremediation, 2013;15(8):814-26.
    PMID: 23819277
    Phytoremediation is an environment-friendly and cost-effective method to clean the environment of heavy metal contamination. A prolonged phytotoxicity test was conducted in a single exposure. Scirpus grossus plants were grown in sand to which the diluted Pb (NO3)2 was added, with the variation of concentration were 0, 100, 200, 400, 600, and 800 mg/L. It was found that Scirpus grossus plants can tolerate Pb at concentrations of up to 400 mg/L. The withering was observed on day-7 for Pb concentrations of 400 mg/L and above. 100% of the plants withered with a Pb concentration of 600 mg/L on day 65. The Pb concentration in water medium decreased while in plant tissues increased. Adsorption of Pb solution ranged between 2 to 6% for concentrations of 100 to 800 mg/L. The Bioaccumulation Coefficient and Translocation Factor of Scirpus grossus were found greater than 1, indicating that this species is a hyperaccumulator plant.
    Matched MeSH terms: Cyperaceae/drug effects*; Cyperaceae/metabolism
  15. Ujang Z, Soedjono E, Salim MR, Shutes RB
    Water Sci Technol, 2005;52(12):243-50.
    PMID: 16477992
    Municipal leachate was treated in an experimental unit of constructed wetlands of subsurface flow type. The parameters studied were organics (BOD and COD), solids and heavy metals (Zn, Ni, Cu, Cr and Pb). Using two types of emergent plants of Scirpus globulosus and Eriocaulon sexangulare, more than 80% removal was achieved for all the parameters. E. sexangulare removed organics and heavy metals better than Scirpus globulosus. A higher concentration of heavy metals in the influent did not change the removal efficiency.
    Matched MeSH terms: Cyperaceae/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links